Whakaoti mō x, y
x=\frac{1}{3}\approx 0.333333333
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x+15y=59,3x+4y=17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-3x+15y=59
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-3x=-15y+59
Me tango 15y mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}\left(-15y+59\right)
Whakawehea ngā taha e rua ki te -3.
x=5y-\frac{59}{3}
Whakareatia -\frac{1}{3} ki te -15y+59.
3\left(5y-\frac{59}{3}\right)+4y=17
Whakakapia te 5y-\frac{59}{3} mō te x ki tērā atu whārite, 3x+4y=17.
15y-59+4y=17
Whakareatia 3 ki te 5y-\frac{59}{3}.
19y-59=17
Tāpiri 15y ki te 4y.
19y=76
Me tāpiri 59 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te 19.
x=5\times 4-\frac{59}{3}
Whakaurua te 4 mō y ki x=5y-\frac{59}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=20-\frac{59}{3}
Whakareatia 5 ki te 4.
x=\frac{1}{3}
Tāpiri -\frac{59}{3} ki te 20.
x=\frac{1}{3},y=4
Kua oti te pūnaha te whakatau.
-3x+15y=59,3x+4y=17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-3&15\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}59\\17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}-3&15\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}59\\17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-3&15\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}59\\17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&15\\3&4\end{matrix}\right))\left(\begin{matrix}59\\17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-3\times 4-15\times 3}&-\frac{15}{-3\times 4-15\times 3}\\-\frac{3}{-3\times 4-15\times 3}&-\frac{3}{-3\times 4-15\times 3}\end{matrix}\right)\left(\begin{matrix}59\\17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{57}&\frac{5}{19}\\\frac{1}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}59\\17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{57}\times 59+\frac{5}{19}\times 17\\\frac{1}{19}\times 59+\frac{1}{19}\times 17\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{3},y=4
Tangohia ngā huānga poukapa x me y.
-3x+15y=59,3x+4y=17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-3\right)x+3\times 15y=3\times 59,-3\times 3x-3\times 4y=-3\times 17
Kia ōrite ai a -3x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -3.
-9x+45y=177,-9x-12y=-51
Whakarūnātia.
-9x+9x+45y+12y=177+51
Me tango -9x-12y=-51 mai i -9x+45y=177 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
45y+12y=177+51
Tāpiri -9x ki te 9x. Ka whakakore atu ngā kupu -9x me 9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
57y=177+51
Tāpiri 45y ki te 12y.
57y=228
Tāpiri 177 ki te 51.
y=4
Whakawehea ngā taha e rua ki te 57.
3x+4\times 4=17
Whakaurua te 4 mō y ki 3x+4y=17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+16=17
Whakareatia 4 ki te 4.
3x=1
Me tango 16 mai i ngā taha e rua o te whārite.
x=\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3},y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}