Whakaoti mō x, y
x=1
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x-6y=-26,5x+2y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x-6y=-26
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=6y-26
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(6y-26\right)
Whakawehea ngā taha e rua ki te -2.
x=-3y+13
Whakareatia -\frac{1}{2} ki te 6y-26.
5\left(-3y+13\right)+2y=13
Whakakapia te -3y+13 mō te x ki tērā atu whārite, 5x+2y=13.
-15y+65+2y=13
Whakareatia 5 ki te -3y+13.
-13y+65=13
Tāpiri -15y ki te 2y.
-13y=-52
Me tango 65 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -13.
x=-3\times 4+13
Whakaurua te 4 mō y ki x=-3y+13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-12+13
Whakareatia -3 ki te 4.
x=1
Tāpiri 13 ki te -12.
x=1,y=4
Kua oti te pūnaha te whakatau.
-2x-6y=-26,5x+2y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-26\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-6\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2\times 2-\left(-6\times 5\right)}&-\frac{-6}{-2\times 2-\left(-6\times 5\right)}\\-\frac{5}{-2\times 2-\left(-6\times 5\right)}&-\frac{2}{-2\times 2-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{3}{13}\\-\frac{5}{26}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\left(-26\right)+\frac{3}{13}\times 13\\-\frac{5}{26}\left(-26\right)-\frac{1}{13}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=4
Tangohia ngā huānga poukapa x me y.
-2x-6y=-26,5x+2y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\left(-2\right)x+5\left(-6\right)y=5\left(-26\right),-2\times 5x-2\times 2y=-2\times 13
Kia ōrite ai a -2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-10x-30y=-130,-10x-4y=-26
Whakarūnātia.
-10x+10x-30y+4y=-130+26
Me tango -10x-4y=-26 mai i -10x-30y=-130 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-30y+4y=-130+26
Tāpiri -10x ki te 10x. Ka whakakore atu ngā kupu -10x me 10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-26y=-130+26
Tāpiri -30y ki te 4y.
-26y=-104
Tāpiri -130 ki te 26.
y=4
Whakawehea ngā taha e rua ki te -26.
5x+2\times 4=13
Whakaurua te 4 mō y ki 5x+2y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+8=13
Whakareatia 2 ki te 4.
5x=5
Me tango 8 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 5.
x=1,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}