Whakaoti mō x, y, z
x=0
y=1
z = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
y=4+2x+2z
Me whakaoti te -2x+y-2z=4 mō y.
2x+4+2x+2z=1 -x+3\left(4+2x+2z\right)-2z=6
Whakakapia te 4+2x+2z mō te y i te whārite tuarua me te tuatoru.
x=-\frac{3}{4}-\frac{1}{2}z z=-\frac{5}{4}x-\frac{3}{2}
Me whakaoti ēnei whārite mō x me z takitahi.
z=-\frac{5}{4}\left(-\frac{3}{4}-\frac{1}{2}z\right)-\frac{3}{2}
Whakakapia te -\frac{3}{4}-\frac{1}{2}z mō te x i te whārite z=-\frac{5}{4}x-\frac{3}{2}.
z=-\frac{3}{2}
Me whakaoti te z=-\frac{5}{4}\left(-\frac{3}{4}-\frac{1}{2}z\right)-\frac{3}{2} mō z.
x=-\frac{3}{4}-\frac{1}{2}\left(-\frac{3}{2}\right)
Whakakapia te -\frac{3}{2} mō te z i te whārite x=-\frac{3}{4}-\frac{1}{2}z.
x=0
Tātaitia te x i te x=-\frac{3}{4}-\frac{1}{2}\left(-\frac{3}{2}\right).
y=4+2\times 0+2\left(-\frac{3}{2}\right)
Whakakapia te 0 mō te x me te -\frac{3}{2} mō z i te whārite y=4+2x+2z.
y=1
Tātaitia te y i te y=4+2\times 0+2\left(-\frac{3}{2}\right).
x=0 y=1 z=-\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}