Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x+y=-1,4x-y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-y-1
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-y-1\right)
Whakawehea ngā taha e rua ki te -2.
x=\frac{1}{2}y+\frac{1}{2}
Whakareatia -\frac{1}{2} ki te -y-1.
4\left(\frac{1}{2}y+\frac{1}{2}\right)-y=-3
Whakakapia te \frac{1+y}{2} mō te x ki tērā atu whārite, 4x-y=-3.
2y+2-y=-3
Whakareatia 4 ki te \frac{1+y}{2}.
y+2=-3
Tāpiri 2y ki te -y.
y=-5
Me tango 2 mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5\right)+\frac{1}{2}
Whakaurua te -5 mō y ki x=\frac{1}{2}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+1}{2}
Whakareatia \frac{1}{2} ki te -5.
x=-2
Tāpiri \frac{1}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=-5
Kua oti te pūnaha te whakatau.
-2x+y=-1,4x-y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-2\left(-1\right)-4}&-\frac{1}{-2\left(-1\right)-4}\\-\frac{4}{-2\left(-1\right)-4}&-\frac{2}{-2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}-1\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\2&1\end{matrix}\right)\left(\begin{matrix}-1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-3\right)\\2\left(-1\right)-3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=-5
Tangohia ngā huānga poukapa x me y.
-2x+y=-1,4x-y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-2\right)x+4y=4\left(-1\right),-2\times 4x-2\left(-1\right)y=-2\left(-3\right)
Kia ōrite ai a -2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-8x+4y=-4,-8x+2y=6
Whakarūnātia.
-8x+8x+4y-2y=-4-6
Me tango -8x+2y=6 mai i -8x+4y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-2y=-4-6
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-4-6
Tāpiri 4y ki te -2y.
2y=-10
Tāpiri -4 ki te -6.
y=-5
Whakawehea ngā taha e rua ki te 2.
4x-\left(-5\right)=-3
Whakaurua te -5 mō y ki 4x-y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=-8
Me tango 5 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 4.
x=-2,y=-5
Kua oti te pūnaha te whakatau.