Whakaoti mō x, y, z
x=-\frac{7}{19}\approx -0.368421053
y=-\frac{17}{19}\approx -0.894736842
z=\frac{12}{19}\approx 0.631578947
Tohaina
Kua tāruatia ki te papatopenga
1+x=z 3x-4y+4z=5 -2x+5y-2z=-5
Me raupapa anō ngā whārite.
z=1+x
Me whakaoti te 1+x=z mō z.
3x-4y+4\left(1+x\right)=5 -2x+5y-2\left(1+x\right)=-5
Whakakapia te 1+x mō te z i te whārite tuarua me te tuatoru.
y=\frac{7}{4}x-\frac{1}{4} x=\frac{5}{4}y+\frac{3}{4}
Me whakaoti ēnei whārite mō y me x takitahi.
x=\frac{5}{4}\left(\frac{7}{4}x-\frac{1}{4}\right)+\frac{3}{4}
Whakakapia te \frac{7}{4}x-\frac{1}{4} mō te y i te whārite x=\frac{5}{4}y+\frac{3}{4}.
x=-\frac{7}{19}
Me whakaoti te x=\frac{5}{4}\left(\frac{7}{4}x-\frac{1}{4}\right)+\frac{3}{4} mō x.
y=\frac{7}{4}\left(-\frac{7}{19}\right)-\frac{1}{4}
Whakakapia te -\frac{7}{19} mō te x i te whārite y=\frac{7}{4}x-\frac{1}{4}.
y=-\frac{17}{19}
Tātaitia te y i te y=\frac{7}{4}\left(-\frac{7}{19}\right)-\frac{1}{4}.
z=1-\frac{7}{19}
Whakakapia te -\frac{7}{19} mō te x i te whārite z=1+x.
z=\frac{12}{19}
Tātaitia te z i te z=1-\frac{7}{19}.
x=-\frac{7}{19} y=-\frac{17}{19} z=\frac{12}{19}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}