Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1+x=z 3x-4y+4z=5 -2x+5y-2z=-5
Me raupapa anō ngā whārite.
z=1+x
Me whakaoti te 1+x=z mō z.
3x-4y+4\left(1+x\right)=5 -2x+5y-2\left(1+x\right)=-5
Whakakapia te 1+x mō te z i te whārite tuarua me te tuatoru.
y=\frac{7}{4}x-\frac{1}{4} x=\frac{5}{4}y+\frac{3}{4}
Me whakaoti ēnei whārite mō y me x takitahi.
x=\frac{5}{4}\left(\frac{7}{4}x-\frac{1}{4}\right)+\frac{3}{4}
Whakakapia te \frac{7}{4}x-\frac{1}{4} mō te y i te whārite x=\frac{5}{4}y+\frac{3}{4}.
x=-\frac{7}{19}
Me whakaoti te x=\frac{5}{4}\left(\frac{7}{4}x-\frac{1}{4}\right)+\frac{3}{4} mō x.
y=\frac{7}{4}\left(-\frac{7}{19}\right)-\frac{1}{4}
Whakakapia te -\frac{7}{19} mō te x i te whārite y=\frac{7}{4}x-\frac{1}{4}.
y=-\frac{17}{19}
Tātaitia te y i te y=\frac{7}{4}\left(-\frac{7}{19}\right)-\frac{1}{4}.
z=1-\frac{7}{19}
Whakakapia te -\frac{7}{19} mō te x i te whārite z=1+x.
z=\frac{12}{19}
Tātaitia te z i te z=1-\frac{7}{19}.
x=-\frac{7}{19} y=-\frac{17}{19} z=\frac{12}{19}
Kua oti te pūnaha te whakatau.