Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x+4y=14,x-4y=-7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+4y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-4y+14
Me tango 4y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-4y+14\right)
Whakawehea ngā taha e rua ki te -2.
x=2y-7
Whakareatia -\frac{1}{2} ki te -4y+14.
2y-7-4y=-7
Whakakapia te 2y-7 mō te x ki tērā atu whārite, x-4y=-7.
-2y-7=-7
Tāpiri 2y ki te -4y.
-2y=0
Me tāpiri 7 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -2.
x=-7
Whakaurua te 0 mō y ki x=2y-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-7,y=0
Kua oti te pūnaha te whakatau.
-2x+4y=14,x-4y=-7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}14\\-7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&4\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}14\\-7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}14\\-7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-2\left(-4\right)-4}&-\frac{4}{-2\left(-4\right)-4}\\-\frac{1}{-2\left(-4\right)-4}&-\frac{2}{-2\left(-4\right)-4}\end{matrix}\right)\left(\begin{matrix}14\\-7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\-\frac{1}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}14\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14-\left(-7\right)\\-\frac{1}{4}\times 14-\frac{1}{2}\left(-7\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=0
Tangohia ngā huānga poukapa x me y.
-2x+4y=14,x-4y=-7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x+4y=14,-2x-2\left(-4\right)y=-2\left(-7\right)
Kia ōrite ai a -2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-2x+4y=14,-2x+8y=14
Whakarūnātia.
-2x+2x+4y-8y=14-14
Me tango -2x+8y=14 mai i -2x+4y=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-8y=14-14
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=14-14
Tāpiri 4y ki te -8y.
-4y=0
Tāpiri 14 ki te -14.
y=0
Whakawehea ngā taha e rua ki te -4.
x=-7
Whakaurua te 0 mō y ki x-4y=-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-7,y=0
Kua oti te pūnaha te whakatau.