Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x+3y=13,6x-5y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+3y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-3y+13
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-3y+13\right)
Whakawehea ngā taha e rua ki te -2.
x=\frac{3}{2}y-\frac{13}{2}
Whakareatia -\frac{1}{2} ki te -3y+13.
6\left(\frac{3}{2}y-\frac{13}{2}\right)-5y=-3
Whakakapia te \frac{3y-13}{2} mō te x ki tērā atu whārite, 6x-5y=-3.
9y-39-5y=-3
Whakareatia 6 ki te \frac{3y-13}{2}.
4y-39=-3
Tāpiri 9y ki te -5y.
4y=36
Me tāpiri 39 ki ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{2}\times 9-\frac{13}{2}
Whakaurua te 9 mō y ki x=\frac{3}{2}y-\frac{13}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{27-13}{2}
Whakareatia \frac{3}{2} ki te 9.
x=7
Tāpiri -\frac{13}{2} ki te \frac{27}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=7,y=9
Kua oti te pūnaha te whakatau.
-2x+3y=13,6x-5y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&3\\6&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-2\left(-5\right)-3\times 6}&-\frac{3}{-2\left(-5\right)-3\times 6}\\-\frac{6}{-2\left(-5\right)-3\times 6}&-\frac{2}{-2\left(-5\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}13\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}&\frac{3}{8}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}13\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}\times 13+\frac{3}{8}\left(-3\right)\\\frac{3}{4}\times 13+\frac{1}{4}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=9
Tangohia ngā huānga poukapa x me y.
-2x+3y=13,6x-5y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\left(-2\right)x+6\times 3y=6\times 13,-2\times 6x-2\left(-5\right)y=-2\left(-3\right)
Kia ōrite ai a -2x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-12x+18y=78,-12x+10y=6
Whakarūnātia.
-12x+12x+18y-10y=78-6
Me tango -12x+10y=6 mai i -12x+18y=78 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-10y=78-6
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=78-6
Tāpiri 18y ki te -10y.
8y=72
Tāpiri 78 ki te -6.
y=9
Whakawehea ngā taha e rua ki te 8.
6x-5\times 9=-3
Whakaurua te 9 mō y ki 6x-5y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-45=-3
Whakareatia -5 ki te 9.
6x=42
Me tāpiri 45 ki ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te 6.
x=7,y=9
Kua oti te pūnaha te whakatau.