Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x+3y=1,3x-4y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+3y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-3y+1
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-3y+1\right)
Whakawehea ngā taha e rua ki te -2.
x=\frac{3}{2}y-\frac{1}{2}
Whakareatia -\frac{1}{2} ki te -3y+1.
3\left(\frac{3}{2}y-\frac{1}{2}\right)-4y=-1
Whakakapia te \frac{3y-1}{2} mō te x ki tērā atu whārite, 3x-4y=-1.
\frac{9}{2}y-\frac{3}{2}-4y=-1
Whakareatia 3 ki te \frac{3y-1}{2}.
\frac{1}{2}y-\frac{3}{2}=-1
Tāpiri \frac{9y}{2} ki te -4y.
\frac{1}{2}y=\frac{1}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
y=1
Me whakarea ngā taha e rua ki te 2.
x=\frac{3-1}{2}
Whakaurua te 1 mō y ki x=\frac{3}{2}y-\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri -\frac{1}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=1
Kua oti te pūnaha te whakatau.
-2x+3y=1,3x-4y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&3\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-2\left(-4\right)-3\times 3}&-\frac{3}{-2\left(-4\right)-3\times 3}\\-\frac{3}{-2\left(-4\right)-3\times 3}&-\frac{2}{-2\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&3\\3&2\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4+3\left(-1\right)\\3+2\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=1
Tangohia ngā huānga poukapa x me y.
-2x+3y=1,3x-4y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-2\right)x+3\times 3y=3,-2\times 3x-2\left(-4\right)y=-2\left(-1\right)
Kia ōrite ai a -2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-6x+9y=3,-6x+8y=2
Whakarūnātia.
-6x+6x+9y-8y=3-2
Me tango -6x+8y=2 mai i -6x+9y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-8y=3-2
Tāpiri -6x ki te 6x. Ka whakakore atu ngā kupu -6x me 6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=3-2
Tāpiri 9y ki te -8y.
y=1
Tāpiri 3 ki te -2.
3x-4=-1
Whakaurua te 1 mō y ki 3x-4y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=3
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 3.
x=1,y=1
Kua oti te pūnaha te whakatau.