Whakaoti mō x, y
x=12
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x+15y=-24,2x+9y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+15y=-24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-15y-24
Me tango 15y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-15y-24\right)
Whakawehea ngā taha e rua ki te -2.
x=\frac{15}{2}y+12
Whakareatia -\frac{1}{2} ki te -15y-24.
2\left(\frac{15}{2}y+12\right)+9y=24
Whakakapia te \frac{15y}{2}+12 mō te x ki tērā atu whārite, 2x+9y=24.
15y+24+9y=24
Whakareatia 2 ki te \frac{15y}{2}+12.
24y+24=24
Tāpiri 15y ki te 9y.
24y=0
Me tango 24 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 24.
x=12
Whakaurua te 0 mō y ki x=\frac{15}{2}y+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=12,y=0
Kua oti te pūnaha te whakatau.
-2x+15y=-24,2x+9y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&15\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-2&15\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&15\\2&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{-2\times 9-15\times 2}&-\frac{15}{-2\times 9-15\times 2}\\-\frac{2}{-2\times 9-15\times 2}&-\frac{2}{-2\times 9-15\times 2}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}&\frac{5}{16}\\\frac{1}{24}&\frac{1}{24}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}\left(-24\right)+\frac{5}{16}\times 24\\\frac{1}{24}\left(-24\right)+\frac{1}{24}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=12,y=0
Tangohia ngā huānga poukapa x me y.
-2x+15y=-24,2x+9y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-2\right)x+2\times 15y=2\left(-24\right),-2\times 2x-2\times 9y=-2\times 24
Kia ōrite ai a -2x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-4x+30y=-48,-4x-18y=-48
Whakarūnātia.
-4x+4x+30y+18y=-48+48
Me tango -4x-18y=-48 mai i -4x+30y=-48 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30y+18y=-48+48
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
48y=-48+48
Tāpiri 30y ki te 18y.
48y=0
Tāpiri -48 ki te 48.
y=0
Whakawehea ngā taha e rua ki te 48.
2x=24
Whakaurua te 0 mō y ki 2x+9y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=12
Whakawehea ngā taha e rua ki te 2.
x=12,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}