Whakaoti mō B, A
B = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
A = -\frac{7}{6} = -1\frac{1}{6} \approx -1.166666667
Tohaina
Kua tāruatia ki te papatopenga
-15B-3A=-14,B-5A=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-15B-3A=-14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te B mā te wehe i te B i te taha mauī o te tohu ōrite.
-15B=3A-14
Me tāpiri 3A ki ngā taha e rua o te whārite.
B=-\frac{1}{15}\left(3A-14\right)
Whakawehea ngā taha e rua ki te -15.
B=-\frac{1}{5}A+\frac{14}{15}
Whakareatia -\frac{1}{15} ki te 3A-14.
-\frac{1}{5}A+\frac{14}{15}-5A=7
Whakakapia te -\frac{A}{5}+\frac{14}{15} mō te B ki tērā atu whārite, B-5A=7.
-\frac{26}{5}A+\frac{14}{15}=7
Tāpiri -\frac{A}{5} ki te -5A.
-\frac{26}{5}A=\frac{91}{15}
Me tango \frac{14}{15} mai i ngā taha e rua o te whārite.
A=-\frac{7}{6}
Whakawehea ngā taha e rua o te whārite ki te -\frac{26}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
B=-\frac{1}{5}\left(-\frac{7}{6}\right)+\frac{14}{15}
Whakaurua te -\frac{7}{6} mō A ki B=-\frac{1}{5}A+\frac{14}{15}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō B hāngai tonu.
B=\frac{7}{30}+\frac{14}{15}
Whakareatia -\frac{1}{5} ki te -\frac{7}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
B=\frac{7}{6}
Tāpiri \frac{14}{15} ki te \frac{7}{30} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
B=\frac{7}{6},A=-\frac{7}{6}
Kua oti te pūnaha te whakatau.
-15B-3A=-14,B-5A=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-15&-3\\1&-5\end{matrix}\right)\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}-14\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-15&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}-15&-3\\1&-5\end{matrix}\right)\left(\begin{matrix}B\\A\end{matrix}\right)=inverse(\left(\begin{matrix}-15&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}-14\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-15&-3\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}B\\A\end{matrix}\right)=inverse(\left(\begin{matrix}-15&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}-14\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}B\\A\end{matrix}\right)=inverse(\left(\begin{matrix}-15&-3\\1&-5\end{matrix}\right))\left(\begin{matrix}-14\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-15\left(-5\right)-\left(-3\right)}&-\frac{-3}{-15\left(-5\right)-\left(-3\right)}\\-\frac{1}{-15\left(-5\right)-\left(-3\right)}&-\frac{15}{-15\left(-5\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-14\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{78}&\frac{1}{26}\\-\frac{1}{78}&-\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}-14\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{78}\left(-14\right)+\frac{1}{26}\times 7\\-\frac{1}{78}\left(-14\right)-\frac{5}{26}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}B\\A\end{matrix}\right)=\left(\begin{matrix}\frac{7}{6}\\-\frac{7}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
B=\frac{7}{6},A=-\frac{7}{6}
Tangohia ngā huānga poukapa B me A.
-15B-3A=-14,B-5A=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-15B-3A=-14,-15B-15\left(-5\right)A=-15\times 7
Kia ōrite ai a -15B me B, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -15.
-15B-3A=-14,-15B+75A=-105
Whakarūnātia.
-15B+15B-3A-75A=-14+105
Me tango -15B+75A=-105 mai i -15B-3A=-14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3A-75A=-14+105
Tāpiri -15B ki te 15B. Ka whakakore atu ngā kupu -15B me 15B, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-78A=-14+105
Tāpiri -3A ki te -75A.
-78A=91
Tāpiri -14 ki te 105.
A=-\frac{7}{6}
Whakawehea ngā taha e rua ki te -78.
B-5\left(-\frac{7}{6}\right)=7
Whakaurua te -\frac{7}{6} mō A ki B-5A=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō B hāngai tonu.
B+\frac{35}{6}=7
Whakareatia -5 ki te -\frac{7}{6}.
B=\frac{7}{6}
Me tango \frac{35}{6} mai i ngā taha e rua o te whārite.
B=\frac{7}{6},A=-\frac{7}{6}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}