Tīpoka ki ngā ihirangi matua
Whakaoti mō A, B
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-15A+3B=21,-3A-15B=-14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-15A+3B=21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te A mā te wehe i te A i te taha mauī o te tohu ōrite.
-15A=-3B+21
Me tango 3B mai i ngā taha e rua o te whārite.
A=-\frac{1}{15}\left(-3B+21\right)
Whakawehea ngā taha e rua ki te -15.
A=\frac{1}{5}B-\frac{7}{5}
Whakareatia -\frac{1}{15} ki te -3B+21.
-3\left(\frac{1}{5}B-\frac{7}{5}\right)-15B=-14
Whakakapia te \frac{-7+B}{5} mō te A ki tērā atu whārite, -3A-15B=-14.
-\frac{3}{5}B+\frac{21}{5}-15B=-14
Whakareatia -3 ki te \frac{-7+B}{5}.
-\frac{78}{5}B+\frac{21}{5}=-14
Tāpiri -\frac{3B}{5} ki te -15B.
-\frac{78}{5}B=-\frac{91}{5}
Me tango \frac{21}{5} mai i ngā taha e rua o te whārite.
B=\frac{7}{6}
Whakawehea ngā taha e rua o te whārite ki te -\frac{78}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
A=\frac{1}{5}\times \frac{7}{6}-\frac{7}{5}
Whakaurua te \frac{7}{6} mō B ki A=\frac{1}{5}B-\frac{7}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A=\frac{7}{30}-\frac{7}{5}
Whakareatia \frac{1}{5} ki te \frac{7}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
A=-\frac{7}{6}
Tāpiri -\frac{7}{5} ki te \frac{7}{30} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
A=-\frac{7}{6},B=\frac{7}{6}
Kua oti te pūnaha te whakatau.
-15A+3B=21,-3A-15B=-14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-15&3\\-3&-15\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}21\\-14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-15&3\\-3&-15\end{matrix}\right))\left(\begin{matrix}-15&3\\-3&-15\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}-15&3\\-3&-15\end{matrix}\right))\left(\begin{matrix}21\\-14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-15&3\\-3&-15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}-15&3\\-3&-15\end{matrix}\right))\left(\begin{matrix}21\\-14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}-15&3\\-3&-15\end{matrix}\right))\left(\begin{matrix}21\\-14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{-15\left(-15\right)-3\left(-3\right)}&-\frac{3}{-15\left(-15\right)-3\left(-3\right)}\\-\frac{-3}{-15\left(-15\right)-3\left(-3\right)}&-\frac{15}{-15\left(-15\right)-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}21\\-14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{78}&-\frac{1}{78}\\\frac{1}{78}&-\frac{5}{78}\end{matrix}\right)\left(\begin{matrix}21\\-14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{78}\times 21-\frac{1}{78}\left(-14\right)\\\frac{1}{78}\times 21-\frac{5}{78}\left(-14\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{6}\\\frac{7}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
A=-\frac{7}{6},B=\frac{7}{6}
Tangohia ngā huānga poukapa A me B.
-15A+3B=21,-3A-15B=-14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\left(-15\right)A-3\times 3B=-3\times 21,-15\left(-3\right)A-15\left(-15\right)B=-15\left(-14\right)
Kia ōrite ai a -15A me -3A, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -15.
45A-9B=-63,45A+225B=210
Whakarūnātia.
45A-45A-9B-225B=-63-210
Me tango 45A+225B=210 mai i 45A-9B=-63 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9B-225B=-63-210
Tāpiri 45A ki te -45A. Ka whakakore atu ngā kupu 45A me -45A, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-234B=-63-210
Tāpiri -9B ki te -225B.
-234B=-273
Tāpiri -63 ki te -210.
B=\frac{7}{6}
Whakawehea ngā taha e rua ki te -234.
-3A-15\times \frac{7}{6}=-14
Whakaurua te \frac{7}{6} mō B ki -3A-15B=-14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
-3A-\frac{35}{2}=-14
Whakareatia -15 ki te \frac{7}{6}.
-3A=\frac{7}{2}
Me tāpiri \frac{35}{2} ki ngā taha e rua o te whārite.
A=-\frac{7}{6}
Whakawehea ngā taha e rua ki te -3.
A=-\frac{7}{6},B=\frac{7}{6}
Kua oti te pūnaha te whakatau.