Whakaoti mō x, y
x=0
y=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
-12x-5y=40,12x-11y=88
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-12x-5y=40
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-12x=5y+40
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=-\frac{1}{12}\left(5y+40\right)
Whakawehea ngā taha e rua ki te -12.
x=-\frac{5}{12}y-\frac{10}{3}
Whakareatia -\frac{1}{12} ki te 40+5y.
12\left(-\frac{5}{12}y-\frac{10}{3}\right)-11y=88
Whakakapia te -\frac{5y}{12}-\frac{10}{3} mō te x ki tērā atu whārite, 12x-11y=88.
-5y-40-11y=88
Whakareatia 12 ki te -\frac{5y}{12}-\frac{10}{3}.
-16y-40=88
Tāpiri -5y ki te -11y.
-16y=128
Me tāpiri 40 ki ngā taha e rua o te whārite.
y=-8
Whakawehea ngā taha e rua ki te -16.
x=-\frac{5}{12}\left(-8\right)-\frac{10}{3}
Whakaurua te -8 mō y ki x=-\frac{5}{12}y-\frac{10}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{10-10}{3}
Whakareatia -\frac{5}{12} ki te -8.
x=0
Tāpiri -\frac{10}{3} ki te \frac{10}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-8
Kua oti te pūnaha te whakatau.
-12x-5y=40,12x-11y=88
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\88\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{-12\left(-11\right)-\left(-5\times 12\right)}&-\frac{-5}{-12\left(-11\right)-\left(-5\times 12\right)}\\-\frac{12}{-12\left(-11\right)-\left(-5\times 12\right)}&-\frac{12}{-12\left(-11\right)-\left(-5\times 12\right)}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{192}&\frac{5}{192}\\-\frac{1}{16}&-\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{192}\times 40+\frac{5}{192}\times 88\\-\frac{1}{16}\times 40-\frac{1}{16}\times 88\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-8
Tangohia ngā huānga poukapa x me y.
-12x-5y=40,12x-11y=88
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
12\left(-12\right)x+12\left(-5\right)y=12\times 40,-12\times 12x-12\left(-11\right)y=-12\times 88
Kia ōrite ai a -12x me 12x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 12 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -12.
-144x-60y=480,-144x+132y=-1056
Whakarūnātia.
-144x+144x-60y-132y=480+1056
Me tango -144x+132y=-1056 mai i -144x-60y=480 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-60y-132y=480+1056
Tāpiri -144x ki te 144x. Ka whakakore atu ngā kupu -144x me 144x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-192y=480+1056
Tāpiri -60y ki te -132y.
-192y=1536
Tāpiri 480 ki te 1056.
y=-8
Whakawehea ngā taha e rua ki te -192.
12x-11\left(-8\right)=88
Whakaurua te -8 mō y ki 12x-11y=88. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
12x+88=88
Whakareatia -11 ki te -8.
12x=0
Me tango 88 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 12.
x=0,y=-8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}