Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-12x+10y=-10,6x-7y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-12x+10y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-12x=-10y-10
Me tango 10y mai i ngā taha e rua o te whārite.
x=-\frac{1}{12}\left(-10y-10\right)
Whakawehea ngā taha e rua ki te -12.
x=\frac{5}{6}y+\frac{5}{6}
Whakareatia -\frac{1}{12} ki te -10y-10.
6\left(\frac{5}{6}y+\frac{5}{6}\right)-7y=-5
Whakakapia te \frac{5+5y}{6} mō te x ki tērā atu whārite, 6x-7y=-5.
5y+5-7y=-5
Whakareatia 6 ki te \frac{5+5y}{6}.
-2y+5=-5
Tāpiri 5y ki te -7y.
-2y=-10
Me tango 5 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -2.
x=\frac{5}{6}\times 5+\frac{5}{6}
Whakaurua te 5 mō y ki x=\frac{5}{6}y+\frac{5}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{25+5}{6}
Whakareatia \frac{5}{6} ki te 5.
x=5
Tāpiri \frac{5}{6} ki te \frac{25}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=5
Kua oti te pūnaha te whakatau.
-12x+10y=-10,6x-7y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-12&10\\6&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-12&10\\6&-7\end{matrix}\right))\left(\begin{matrix}-10\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-12\left(-7\right)-10\times 6}&-\frac{10}{-12\left(-7\right)-10\times 6}\\-\frac{6}{-12\left(-7\right)-10\times 6}&-\frac{12}{-12\left(-7\right)-10\times 6}\end{matrix}\right)\left(\begin{matrix}-10\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}&-\frac{5}{12}\\-\frac{1}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}\left(-10\right)-\frac{5}{12}\left(-5\right)\\-\frac{1}{4}\left(-10\right)-\frac{1}{2}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=5
Tangohia ngā huānga poukapa x me y.
-12x+10y=-10,6x-7y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\left(-12\right)x+6\times 10y=6\left(-10\right),-12\times 6x-12\left(-7\right)y=-12\left(-5\right)
Kia ōrite ai a -12x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -12.
-72x+60y=-60,-72x+84y=60
Whakarūnātia.
-72x+72x+60y-84y=-60-60
Me tango -72x+84y=60 mai i -72x+60y=-60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
60y-84y=-60-60
Tāpiri -72x ki te 72x. Ka whakakore atu ngā kupu -72x me 72x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=-60-60
Tāpiri 60y ki te -84y.
-24y=-120
Tāpiri -60 ki te -60.
y=5
Whakawehea ngā taha e rua ki te -24.
6x-7\times 5=-5
Whakaurua te 5 mō y ki 6x-7y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-35=-5
Whakareatia -7 ki te 5.
6x=30
Me tāpiri 35 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 6.
x=5,y=5
Kua oti te pūnaha te whakatau.