Whakaoti mō y, x
x=-1
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10y+9x=-9,10y+5x=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-10y+9x=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
-10y=-9x-9
Me tango 9x mai i ngā taha e rua o te whārite.
y=-\frac{1}{10}\left(-9x-9\right)
Whakawehea ngā taha e rua ki te -10.
y=\frac{9}{10}x+\frac{9}{10}
Whakareatia -\frac{1}{10} ki te -9x-9.
10\left(\frac{9}{10}x+\frac{9}{10}\right)+5x=-5
Whakakapia te \frac{9+9x}{10} mō te y ki tērā atu whārite, 10y+5x=-5.
9x+9+5x=-5
Whakareatia 10 ki te \frac{9+9x}{10}.
14x+9=-5
Tāpiri 9x ki te 5x.
14x=-14
Me tango 9 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 14.
y=\frac{9}{10}\left(-1\right)+\frac{9}{10}
Whakaurua te -1 mō x ki y=\frac{9}{10}x+\frac{9}{10}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{-9+9}{10}
Whakareatia \frac{9}{10} ki te -1.
y=0
Tāpiri \frac{9}{10} ki te -\frac{9}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=0,x=-1
Kua oti te pūnaha te whakatau.
-10y+9x=-9,10y+5x=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-10&9\\10&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-10&9\\10&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-10&9\\10&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-9\times 10}&-\frac{9}{-10\times 5-9\times 10}\\-\frac{10}{-10\times 5-9\times 10}&-\frac{10}{-10\times 5-9\times 10}\end{matrix}\right)\left(\begin{matrix}-9\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{28}&\frac{9}{140}\\\frac{1}{14}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-9\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{28}\left(-9\right)+\frac{9}{140}\left(-5\right)\\\frac{1}{14}\left(-9\right)+\frac{1}{14}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
y=0,x=-1
Tangohia ngā huānga poukapa y me x.
-10y+9x=-9,10y+5x=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10\left(-10\right)y+10\times 9x=10\left(-9\right),-10\times 10y-10\times 5x=-10\left(-5\right)
Kia ōrite ai a -10y me 10y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -10.
-100y+90x=-90,-100y-50x=50
Whakarūnātia.
-100y+100y+90x+50x=-90-50
Me tango -100y-50x=50 mai i -100y+90x=-90 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
90x+50x=-90-50
Tāpiri -100y ki te 100y. Ka whakakore atu ngā kupu -100y me 100y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
140x=-90-50
Tāpiri 90x ki te 50x.
140x=-140
Tāpiri -90 ki te -50.
x=-1
Whakawehea ngā taha e rua ki te 140.
10y+5\left(-1\right)=-5
Whakaurua te -1 mō x ki 10y+5x=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
10y-5=-5
Whakareatia 5 ki te -1.
10y=0
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 10.
y=0,x=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}