Whakaoti mō x, y
x=-3
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10x-7y=-5,7x+5y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-10x-7y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-10x=7y-5
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=-\frac{1}{10}\left(7y-5\right)
Whakawehea ngā taha e rua ki te -10.
x=-\frac{7}{10}y+\frac{1}{2}
Whakareatia -\frac{1}{10} ki te 7y-5.
7\left(-\frac{7}{10}y+\frac{1}{2}\right)+5y=4
Whakakapia te -\frac{7y}{10}+\frac{1}{2} mō te x ki tērā atu whārite, 7x+5y=4.
-\frac{49}{10}y+\frac{7}{2}+5y=4
Whakareatia 7 ki te -\frac{7y}{10}+\frac{1}{2}.
\frac{1}{10}y+\frac{7}{2}=4
Tāpiri -\frac{49y}{10} ki te 5y.
\frac{1}{10}y=\frac{1}{2}
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
y=5
Me whakarea ngā taha e rua ki te 10.
x=-\frac{7}{10}\times 5+\frac{1}{2}
Whakaurua te 5 mō y ki x=-\frac{7}{10}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-7+1}{2}
Whakareatia -\frac{7}{10} ki te 5.
x=-3
Tāpiri \frac{1}{2} ki te -\frac{7}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=5
Kua oti te pūnaha te whakatau.
-10x-7y=-5,7x+5y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-10&-7\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-10&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-10&-7\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-10&-7\\7&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-\left(-7\times 7\right)}&-\frac{-7}{-10\times 5-\left(-7\times 7\right)}\\-\frac{7}{-10\times 5-\left(-7\times 7\right)}&-\frac{10}{-10\times 5-\left(-7\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-5\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&-7\\7&10\end{matrix}\right)\left(\begin{matrix}-5\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\left(-5\right)-7\times 4\\7\left(-5\right)+10\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=5
Tangohia ngā huānga poukapa x me y.
-10x-7y=-5,7x+5y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\left(-10\right)x+7\left(-7\right)y=7\left(-5\right),-10\times 7x-10\times 5y=-10\times 4
Kia ōrite ai a -10x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -10.
-70x-49y=-35,-70x-50y=-40
Whakarūnātia.
-70x+70x-49y+50y=-35+40
Me tango -70x-50y=-40 mai i -70x-49y=-35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-49y+50y=-35+40
Tāpiri -70x ki te 70x. Ka whakakore atu ngā kupu -70x me 70x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=-35+40
Tāpiri -49y ki te 50y.
y=5
Tāpiri -35 ki te 40.
7x+5\times 5=4
Whakaurua te 5 mō y ki 7x+5y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+25=4
Whakareatia 5 ki te 5.
7x=-21
Me tango 25 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 7.
x=-3,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}