Whakaoti mō x, y
x=0
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10x-6y=12,4x+7y=-14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-10x-6y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-10x=6y+12
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=-\frac{1}{10}\left(6y+12\right)
Whakawehea ngā taha e rua ki te -10.
x=-\frac{3}{5}y-\frac{6}{5}
Whakareatia -\frac{1}{10} ki te 12+6y.
4\left(-\frac{3}{5}y-\frac{6}{5}\right)+7y=-14
Whakakapia te \frac{-3y-6}{5} mō te x ki tērā atu whārite, 4x+7y=-14.
-\frac{12}{5}y-\frac{24}{5}+7y=-14
Whakareatia 4 ki te \frac{-3y-6}{5}.
\frac{23}{5}y-\frac{24}{5}=-14
Tāpiri -\frac{12y}{5} ki te 7y.
\frac{23}{5}y=-\frac{46}{5}
Me tāpiri \frac{24}{5} ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{5}\left(-2\right)-\frac{6}{5}
Whakaurua te -2 mō y ki x=-\frac{3}{5}y-\frac{6}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{6-6}{5}
Whakareatia -\frac{3}{5} ki te -2.
x=0
Tāpiri -\frac{6}{5} ki te \frac{6}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=-2
Kua oti te pūnaha te whakatau.
-10x-6y=12,4x+7y=-14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-10&-6\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\-14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-10&-6\\4&7\end{matrix}\right))\left(\begin{matrix}-10&-6\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-6\\4&7\end{matrix}\right))\left(\begin{matrix}12\\-14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-10&-6\\4&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-6\\4&7\end{matrix}\right))\left(\begin{matrix}12\\-14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-6\\4&7\end{matrix}\right))\left(\begin{matrix}12\\-14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-10\times 7-\left(-6\times 4\right)}&-\frac{-6}{-10\times 7-\left(-6\times 4\right)}\\-\frac{4}{-10\times 7-\left(-6\times 4\right)}&-\frac{10}{-10\times 7-\left(-6\times 4\right)}\end{matrix}\right)\left(\begin{matrix}12\\-14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{46}&-\frac{3}{23}\\\frac{2}{23}&\frac{5}{23}\end{matrix}\right)\left(\begin{matrix}12\\-14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{46}\times 12-\frac{3}{23}\left(-14\right)\\\frac{2}{23}\times 12+\frac{5}{23}\left(-14\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-2
Tangohia ngā huānga poukapa x me y.
-10x-6y=12,4x+7y=-14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-10\right)x+4\left(-6\right)y=4\times 12,-10\times 4x-10\times 7y=-10\left(-14\right)
Kia ōrite ai a -10x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -10.
-40x-24y=48,-40x-70y=140
Whakarūnātia.
-40x+40x-24y+70y=48-140
Me tango -40x-70y=140 mai i -40x-24y=48 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-24y+70y=48-140
Tāpiri -40x ki te 40x. Ka whakakore atu ngā kupu -40x me 40x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
46y=48-140
Tāpiri -24y ki te 70y.
46y=-92
Tāpiri 48 ki te -140.
y=-2
Whakawehea ngā taha e rua ki te 46.
4x+7\left(-2\right)=-14
Whakaurua te -2 mō y ki 4x+7y=-14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-14=-14
Whakareatia 7 ki te -2.
4x=0
Me tāpiri 14 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 4.
x=0,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}