Whakaoti mō x, y
x=4
y=25
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10x+20y=460,30x+60y=1620
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-10x+20y=460
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-10x=-20y+460
Me tango 20y mai i ngā taha e rua o te whārite.
x=-\frac{1}{10}\left(-20y+460\right)
Whakawehea ngā taha e rua ki te -10.
x=2y-46
Whakareatia -\frac{1}{10} ki te -20y+460.
30\left(2y-46\right)+60y=1620
Whakakapia te -46+2y mō te x ki tērā atu whārite, 30x+60y=1620.
60y-1380+60y=1620
Whakareatia 30 ki te -46+2y.
120y-1380=1620
Tāpiri 60y ki te 60y.
120y=3000
Me tāpiri 1380 ki ngā taha e rua o te whārite.
y=25
Whakawehea ngā taha e rua ki te 120.
x=2\times 25-46
Whakaurua te 25 mō y ki x=2y-46. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=50-46
Whakareatia 2 ki te 25.
x=4
Tāpiri -46 ki te 50.
x=4,y=25
Kua oti te pūnaha te whakatau.
-10x+20y=460,30x+60y=1620
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}460\\1620\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-10&20\\30&60\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{-10\times 60-20\times 30}&-\frac{20}{-10\times 60-20\times 30}\\-\frac{30}{-10\times 60-20\times 30}&-\frac{10}{-10\times 60-20\times 30}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&\frac{1}{60}\\\frac{1}{40}&\frac{1}{120}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\times 460+\frac{1}{60}\times 1620\\\frac{1}{40}\times 460+\frac{1}{120}\times 1620\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\25\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=25
Tangohia ngā huānga poukapa x me y.
-10x+20y=460,30x+60y=1620
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
30\left(-10\right)x+30\times 20y=30\times 460,-10\times 30x-10\times 60y=-10\times 1620
Kia ōrite ai a -10x me 30x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 30 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -10.
-300x+600y=13800,-300x-600y=-16200
Whakarūnātia.
-300x+300x+600y+600y=13800+16200
Me tango -300x-600y=-16200 mai i -300x+600y=13800 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
600y+600y=13800+16200
Tāpiri -300x ki te 300x. Ka whakakore atu ngā kupu -300x me 300x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
1200y=13800+16200
Tāpiri 600y ki te 600y.
1200y=30000
Tāpiri 13800 ki te 16200.
y=25
Whakawehea ngā taha e rua ki te 1200.
30x+60\times 25=1620
Whakaurua te 25 mō y ki 30x+60y=1620. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
30x+1500=1620
Whakareatia 60 ki te 25.
30x=120
Me tango 1500 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 30.
x=4,y=25
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}