Whakaoti mō x, y
x=1
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10x+2y=-8,10x-y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-10x+2y=-8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-10x=-2y-8
Me tango 2y mai i ngā taha e rua o te whārite.
x=-\frac{1}{10}\left(-2y-8\right)
Whakawehea ngā taha e rua ki te -10.
x=\frac{1}{5}y+\frac{4}{5}
Whakareatia -\frac{1}{10} ki te -2y-8.
10\left(\frac{1}{5}y+\frac{4}{5}\right)-y=9
Whakakapia te \frac{4+y}{5} mō te x ki tērā atu whārite, 10x-y=9.
2y+8-y=9
Whakareatia 10 ki te \frac{4+y}{5}.
y+8=9
Tāpiri 2y ki te -y.
y=1
Me tango 8 mai i ngā taha e rua o te whārite.
x=\frac{1+4}{5}
Whakaurua te 1 mō y ki x=\frac{1}{5}y+\frac{4}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri \frac{4}{5} ki te \frac{1}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=1
Kua oti te pūnaha te whakatau.
-10x+2y=-8,10x-y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-10&2\\10&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-10\left(-1\right)-2\times 10}&-\frac{2}{-10\left(-1\right)-2\times 10}\\-\frac{10}{-10\left(-1\right)-2\times 10}&-\frac{10}{-10\left(-1\right)-2\times 10}\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-8\right)+\frac{1}{5}\times 9\\-8+9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=1
Tangohia ngā huānga poukapa x me y.
-10x+2y=-8,10x-y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10\left(-10\right)x+10\times 2y=10\left(-8\right),-10\times 10x-10\left(-1\right)y=-10\times 9
Kia ōrite ai a -10x me 10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -10.
-100x+20y=-80,-100x+10y=-90
Whakarūnātia.
-100x+100x+20y-10y=-80+90
Me tango -100x+10y=-90 mai i -100x+20y=-80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-10y=-80+90
Tāpiri -100x ki te 100x. Ka whakakore atu ngā kupu -100x me 100x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=-80+90
Tāpiri 20y ki te -10y.
10y=10
Tāpiri -80 ki te 90.
y=1
Whakawehea ngā taha e rua ki te 10.
10x-1=9
Whakaurua te 1 mō y ki 10x-y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
10x=10
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 10.
x=1,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}