Whakaoti mō x, y
x=7
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-0.8x+2.3y=3.6,1.6x-1.2y=6.4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-0.8x+2.3y=3.6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-0.8x=-2.3y+3.6
Me tango \frac{23y}{10} mai i ngā taha e rua o te whārite.
x=-1.25\left(-2.3y+3.6\right)
Whakawehea ngā taha e rua o te whārite ki te -0.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=2.875y-4.5
Whakareatia -1.25 ki te -\frac{23y}{10}+3.6.
1.6\left(2.875y-4.5\right)-1.2y=6.4
Whakakapia te \frac{23y}{8}-4.5 mō te x ki tērā atu whārite, 1.6x-1.2y=6.4.
4.6y-7.2-1.2y=6.4
Whakareatia 1.6 ki te \frac{23y}{8}-4.5.
3.4y-7.2=6.4
Tāpiri \frac{23y}{5} ki te -\frac{6y}{5}.
3.4y=13.6
Me tāpiri 7.2 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te 3.4, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=2.875\times 4-4.5
Whakaurua te 4 mō y ki x=2.875y-4.5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{23-9}{2}
Whakareatia 2.875 ki te 4.
x=7
Tāpiri -4.5 ki te 11.5 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=7,y=4
Kua oti te pūnaha te whakatau.
-0.8x+2.3y=3.6,1.6x-1.2y=6.4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-0.8&2.3\\1.6&-1.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3.6\\6.4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-0.8&2.3\\1.6&-1.2\end{matrix}\right))\left(\begin{matrix}-0.8&2.3\\1.6&-1.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.8&2.3\\1.6&-1.2\end{matrix}\right))\left(\begin{matrix}3.6\\6.4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-0.8&2.3\\1.6&-1.2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.8&2.3\\1.6&-1.2\end{matrix}\right))\left(\begin{matrix}3.6\\6.4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.8&2.3\\1.6&-1.2\end{matrix}\right))\left(\begin{matrix}3.6\\6.4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1.2}{-0.8\left(-1.2\right)-2.3\times 1.6}&-\frac{2.3}{-0.8\left(-1.2\right)-2.3\times 1.6}\\-\frac{1.6}{-0.8\left(-1.2\right)-2.3\times 1.6}&-\frac{0.8}{-0.8\left(-1.2\right)-2.3\times 1.6}\end{matrix}\right)\left(\begin{matrix}3.6\\6.4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{34}&\frac{115}{136}\\\frac{10}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}3.6\\6.4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{34}\times 3.6+\frac{115}{136}\times 6.4\\\frac{10}{17}\times 3.6+\frac{5}{17}\times 6.4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=4
Tangohia ngā huānga poukapa x me y.
-0.8x+2.3y=3.6,1.6x-1.2y=6.4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
1.6\left(-0.8\right)x+1.6\times 2.3y=1.6\times 3.6,-0.8\times 1.6x-0.8\left(-1.2\right)y=-0.8\times 6.4
Kia ōrite ai a -\frac{4x}{5} me \frac{8x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1.6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -0.8.
-1.28x+3.68y=5.76,-1.28x+0.96y=-5.12
Whakarūnātia.
-1.28x+1.28x+3.68y-0.96y=\frac{144+128}{25}
Me tango -1.28x+0.96y=-5.12 mai i -1.28x+3.68y=5.76 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3.68y-0.96y=\frac{144+128}{25}
Tāpiri -\frac{32x}{25} ki te \frac{32x}{25}. Ka whakakore atu ngā kupu -\frac{32x}{25} me \frac{32x}{25}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2.72y=\frac{144+128}{25}
Tāpiri \frac{92y}{25} ki te -\frac{24y}{25}.
2.72y=10.88
Tāpiri 5.76 ki te 5.12 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=4
Whakawehea ngā taha e rua o te whārite ki te 2.72, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
1.6x-1.2\times 4=6.4
Whakaurua te 4 mō y ki 1.6x-1.2y=6.4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
1.6x-4.8=6.4
Whakareatia -1.2 ki te 4.
1.6x=11.2
Me tāpiri 4.8 ki ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua o te whārite ki te 1.6, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=7,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}