Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-0.5x+0.1y=350,0.4x+0.2y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-0.5x+0.1y=350
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-0.5x=-0.1y+350
Me tango \frac{y}{10} mai i ngā taha e rua o te whārite.
x=-2\left(-0.1y+350\right)
Me whakarea ngā taha e rua ki te -2.
x=0.2y-700
Whakareatia -2 ki te -\frac{y}{10}+350.
0.4\left(0.2y-700\right)+0.2y=0
Whakakapia te \frac{y}{5}-700 mō te x ki tērā atu whārite, 0.4x+0.2y=0.
0.08y-280+0.2y=0
Whakareatia 0.4 ki te \frac{y}{5}-700.
0.28y-280=0
Tāpiri \frac{2y}{25} ki te \frac{y}{5}.
0.28y=280
Me tāpiri 280 ki ngā taha e rua o te whārite.
y=1000
Whakawehea ngā taha e rua o te whārite ki te 0.28, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=0.2\times 1000-700
Whakaurua te 1000 mō y ki x=0.2y-700. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=200-700
Whakareatia 0.2 ki te 1000.
x=-500
Tāpiri -700 ki te 200.
x=-500,y=1000
Kua oti te pūnaha te whakatau.
-0.5x+0.1y=350,0.4x+0.2y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}350\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.5&0.1\\0.4&0.2\end{matrix}\right))\left(\begin{matrix}350\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.2}{-0.5\times 0.2-0.1\times 0.4}&-\frac{0.1}{-0.5\times 0.2-0.1\times 0.4}\\-\frac{0.4}{-0.5\times 0.2-0.1\times 0.4}&-\frac{0.5}{-0.5\times 0.2-0.1\times 0.4}\end{matrix}\right)\left(\begin{matrix}350\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{7}&\frac{5}{7}\\\frac{20}{7}&\frac{25}{7}\end{matrix}\right)\left(\begin{matrix}350\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{7}\times 350\\\frac{20}{7}\times 350\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-500\\1000\end{matrix}\right)
Mahia ngā tātaitanga.
x=-500,y=1000
Tangohia ngā huānga poukapa x me y.
-0.5x+0.1y=350,0.4x+0.2y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.4\left(-0.5\right)x+0.4\times 0.1y=0.4\times 350,-0.5\times 0.4x-0.5\times 0.2y=0
Kia ōrite ai a -\frac{x}{2} me \frac{2x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 0.4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -0.5.
-0.2x+0.04y=140,-0.2x-0.1y=0
Whakarūnātia.
-0.2x+0.2x+0.04y+0.1y=140
Me tango -0.2x-0.1y=0 mai i -0.2x+0.04y=140 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
0.04y+0.1y=140
Tāpiri -\frac{x}{5} ki te \frac{x}{5}. Ka whakakore atu ngā kupu -\frac{x}{5} me \frac{x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
0.14y=140
Tāpiri \frac{y}{25} ki te \frac{y}{10}.
y=1000
Whakawehea ngā taha e rua o te whārite ki te 0.14, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
0.4x+0.2\times 1000=0
Whakaurua te 1000 mō y ki 0.4x+0.2y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
0.4x+200=0
Whakareatia 0.2 ki te 1000.
0.4x=-200
Me tango 200 mai i ngā taha e rua o te whārite.
x=-500
Whakawehea ngā taha e rua o te whārite ki te 0.4, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-500,y=1000
Kua oti te pūnaha te whakatau.