Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-0.1x-0.7y-610=0,-0.8x+0.5y+920=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-0.1x-0.7y-610=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-0.1x-0.7y=610
Me tāpiri 610 ki ngā taha e rua o te whārite.
-0.1x=0.7y+610
Me tāpiri \frac{7y}{10} ki ngā taha e rua o te whārite.
x=-10\left(0.7y+610\right)
Me whakarea ngā taha e rua ki te -10.
x=-7y-6100
Whakareatia -10 ki te \frac{7y}{10}+610.
-0.8\left(-7y-6100\right)+0.5y+920=0
Whakakapia te -7y-6100 mō te x ki tērā atu whārite, -0.8x+0.5y+920=0.
5.6y+4880+0.5y+920=0
Whakareatia -0.8 ki te -7y-6100.
6.1y+4880+920=0
Tāpiri \frac{28y}{5} ki te \frac{y}{2}.
6.1y+5800=0
Tāpiri 4880 ki te 920.
6.1y=-5800
Me tango 5800 mai i ngā taha e rua o te whārite.
y=-\frac{58000}{61}
Whakawehea ngā taha e rua o te whārite ki te 6.1, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-7\left(-\frac{58000}{61}\right)-6100
Whakaurua te -\frac{58000}{61} mō y ki x=-7y-6100. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{406000}{61}-6100
Whakareatia -7 ki te -\frac{58000}{61}.
x=\frac{33900}{61}
Tāpiri -6100 ki te \frac{406000}{61}.
x=\frac{33900}{61},y=-\frac{58000}{61}
Kua oti te pūnaha te whakatau.
-0.1x-0.7y-610=0,-0.8x+0.5y+920=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-0.1&-0.7\\-0.8&0.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}610\\-920\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-0.1&-0.7\\-0.8&0.5\end{matrix}\right))\left(\begin{matrix}-0.1&-0.7\\-0.8&0.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.1&-0.7\\-0.8&0.5\end{matrix}\right))\left(\begin{matrix}610\\-920\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-0.1&-0.7\\-0.8&0.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.1&-0.7\\-0.8&0.5\end{matrix}\right))\left(\begin{matrix}610\\-920\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-0.1&-0.7\\-0.8&0.5\end{matrix}\right))\left(\begin{matrix}610\\-920\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.5}{-0.1\times 0.5-\left(-0.7\left(-0.8\right)\right)}&-\frac{-0.7}{-0.1\times 0.5-\left(-0.7\left(-0.8\right)\right)}\\-\frac{-0.8}{-0.1\times 0.5-\left(-0.7\left(-0.8\right)\right)}&-\frac{0.1}{-0.1\times 0.5-\left(-0.7\left(-0.8\right)\right)}\end{matrix}\right)\left(\begin{matrix}610\\-920\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{50}{61}&-\frac{70}{61}\\-\frac{80}{61}&\frac{10}{61}\end{matrix}\right)\left(\begin{matrix}610\\-920\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{50}{61}\times 610-\frac{70}{61}\left(-920\right)\\-\frac{80}{61}\times 610+\frac{10}{61}\left(-920\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33900}{61}\\-\frac{58000}{61}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{33900}{61},y=-\frac{58000}{61}
Tangohia ngā huānga poukapa x me y.
-0.1x-0.7y-610=0,-0.8x+0.5y+920=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-0.8\left(-0.1\right)x-0.8\left(-0.7\right)y-0.8\left(-610\right)=0,-0.1\left(-0.8\right)x-0.1\times 0.5y-0.1\times 920=0
Kia ōrite ai a -\frac{x}{10} me -\frac{4x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -0.8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -0.1.
0.08x+0.56y+488=0,0.08x-0.05y-92=0
Whakarūnātia.
0.08x-0.08x+0.56y+0.05y+488+92=0
Me tango 0.08x-0.05y-92=0 mai i 0.08x+0.56y+488=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
0.56y+0.05y+488+92=0
Tāpiri \frac{2x}{25} ki te -\frac{2x}{25}. Ka whakakore atu ngā kupu \frac{2x}{25} me -\frac{2x}{25}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
0.61y+488+92=0
Tāpiri \frac{14y}{25} ki te \frac{y}{20}.
0.61y+580=0
Tāpiri 488 ki te 92.
0.61y=-580
Me tango 580 mai i ngā taha e rua o te whārite.
y=-\frac{58000}{61}
Whakawehea ngā taha e rua o te whārite ki te 0.61, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-0.8x+0.5\left(-\frac{58000}{61}\right)+920=0
Whakaurua te -\frac{58000}{61} mō y ki -0.8x+0.5y+920=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-0.8x-\frac{29000}{61}+920=0
Whakareatia 0.5 ki te -\frac{58000}{61} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-0.8x+\frac{27120}{61}=0
Tāpiri -\frac{29000}{61} ki te 920.
-0.8x=-\frac{27120}{61}
Me tango \frac{27120}{61} mai i ngā taha e rua o te whārite.
x=\frac{33900}{61}
Whakawehea ngā taha e rua o te whārite ki te -0.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{33900}{61},y=-\frac{58000}{61}
Kua oti te pūnaha te whakatau.