Aromātai
-10p^{8}
Kimi Pārōnaki e ai ki p
-80p^{7}
Tohaina
Kua tāruatia ki te papatopenga
3mm^{2}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right)
Ko te tauaro o -3m ko 3m.
3m^{3}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
0-5\left(-2\right)p^{4}\left(-p^{4}\right)
Pahekotia te 3m^{3} me -3m^{3}, ka 0.
0-\left(-10p^{4}\left(-p^{4}\right)\right)
Whakareatia te 5 ki te -2, ka -10.
0-10p^{4}p^{4}
Whakareatia te -10 ki te -1, ka 10.
0-10p^{8}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 4 kia riro ai te 8.
-10p^{8}
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}p}(3mm^{2}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right))
Ko te tauaro o -3m ko 3m.
\frac{\mathrm{d}}{\mathrm{d}p}(3m^{3}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right))
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}p}(0-5\left(-2\right)p^{4}\left(-p^{4}\right))
Pahekotia te 3m^{3} me -3m^{3}, ka 0.
\frac{\mathrm{d}}{\mathrm{d}p}(0-\left(-10p^{4}\left(-p^{4}\right)\right))
Whakareatia te 5 ki te -2, ka -10.
\frac{\mathrm{d}}{\mathrm{d}p}(0-10p^{4}p^{4})
Whakareatia te -10 ki te -1, ka 10.
\frac{\mathrm{d}}{\mathrm{d}p}(0-10p^{8})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 4 kia riro ai te 8.
\frac{\mathrm{d}}{\mathrm{d}p}(-10p^{8})
Ko te tau i tāpiria he kore ka hua koia tonu.
8\left(-10\right)p^{8-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-80p^{8-1}
Whakareatia 8 ki te -10.
-80p^{7}
Tango 1 mai i 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}