Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-5=3y-15
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-5.
x-5-3y=-15
Tangohia te 3y mai i ngā taha e rua.
x-3y=-15+5
Me tāpiri te 5 ki ngā taha e rua.
x-3y=-10
Tāpirihia te -15 ki te 5, ka -10.
x+10=2y+20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+10.
x+10-2y=20
Tangohia te 2y mai i ngā taha e rua.
x-2y=20-10
Tangohia te 10 mai i ngā taha e rua.
x-2y=10
Tangohia te 10 i te 20, ka 10.
x-3y=-10,x-2y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y-10
Me tāpiri 3y ki ngā taha e rua o te whārite.
3y-10-2y=10
Whakakapia te 3y-10 mō te x ki tērā atu whārite, x-2y=10.
y-10=10
Tāpiri 3y ki te -2y.
y=20
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=3\times 20-10
Whakaurua te 20 mō y ki x=3y-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=60-10
Whakareatia 3 ki te 20.
x=50
Tāpiri -10 ki te 60.
x=50,y=20
Kua oti te pūnaha te whakatau.
x-5=3y-15
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-5.
x-5-3y=-15
Tangohia te 3y mai i ngā taha e rua.
x-3y=-15+5
Me tāpiri te 5 ki ngā taha e rua.
x-3y=-10
Tāpirihia te -15 ki te 5, ka -10.
x+10=2y+20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+10.
x+10-2y=20
Tangohia te 2y mai i ngā taha e rua.
x-2y=20-10
Tangohia te 10 mai i ngā taha e rua.
x-2y=10
Tangohia te 10 i te 20, ka 10.
x-3y=-10,x-2y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3\right)}&-\frac{-3}{-2-\left(-3\right)}\\-\frac{1}{-2-\left(-3\right)}&\frac{1}{-2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-10\right)+3\times 10\\-\left(-10\right)+10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\20\end{matrix}\right)
Mahia ngā tātaitanga.
x=50,y=20
Tangohia ngā huānga poukapa x me y.
x-5=3y-15
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-5.
x-5-3y=-15
Tangohia te 3y mai i ngā taha e rua.
x-3y=-15+5
Me tāpiri te 5 ki ngā taha e rua.
x-3y=-10
Tāpirihia te -15 ki te 5, ka -10.
x+10=2y+20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+10.
x+10-2y=20
Tangohia te 2y mai i ngā taha e rua.
x-2y=20-10
Tangohia te 10 mai i ngā taha e rua.
x-2y=10
Tangohia te 10 i te 20, ka 10.
x-3y=-10,x-2y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-3y+2y=-10-10
Me tango x-2y=10 mai i x-3y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+2y=-10-10
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-10-10
Tāpiri -3y ki te 2y.
-y=-20
Tāpiri -10 ki te -10.
y=20
Whakawehea ngā taha e rua ki te -1.
x-2\times 20=10
Whakaurua te 20 mō y ki x-2y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-40=10
Whakareatia -2 ki te 20.
x=50
Me tāpiri 40 ki ngā taha e rua o te whārite.
x=50,y=20
Kua oti te pūnaha te whakatau.