Whakaoti mō x
x=3
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-13x+12=\left(x-3\right)\times 2x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 3x-4 ka whakakotahi i ngā kupu rite.
3x^{2}-13x+12=\left(2x-6\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
3x^{2}-13x+12=2x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
3x^{2}-13x+12-2x^{2}=-6x
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-13x+12=-6x
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-13x+12+6x=0
Me tāpiri te 6x ki ngā taha e rua.
x^{2}-7x+12=0
Pahekotia te -13x me 6x, ka -7x.
a+b=-7 ab=12
Hei whakaoti i te whārite, whakatauwehea te x^{2}-7x+12 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-4 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(x-4\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=3
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-3=0.
3x^{2}-13x+12=\left(x-3\right)\times 2x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 3x-4 ka whakakotahi i ngā kupu rite.
3x^{2}-13x+12=\left(2x-6\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
3x^{2}-13x+12=2x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
3x^{2}-13x+12-2x^{2}=-6x
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-13x+12=-6x
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-13x+12+6x=0
Me tāpiri te 6x ki ngā taha e rua.
x^{2}-7x+12=0
Pahekotia te -13x me 6x, ka -7x.
a+b=-7 ab=1\times 12=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-4 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Tuhia anō te x^{2}-7x+12 hei \left(x^{2}-4x\right)+\left(-3x+12\right).
x\left(x-4\right)-3\left(x-4\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-4\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=3
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-3=0.
3x^{2}-13x+12=\left(x-3\right)\times 2x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 3x-4 ka whakakotahi i ngā kupu rite.
3x^{2}-13x+12=\left(2x-6\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
3x^{2}-13x+12=2x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
3x^{2}-13x+12-2x^{2}=-6x
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-13x+12=-6x
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-13x+12+6x=0
Me tāpiri te 6x ki ngā taha e rua.
x^{2}-7x+12=0
Pahekotia te -13x me 6x, ka -7x.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -7 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
Whakareatia -4 ki te 12.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
Tāpiri 49 ki te -48.
x=\frac{-\left(-7\right)±1}{2}
Tuhia te pūtakerua o te 1.
x=\frac{7±1}{2}
Ko te tauaro o -7 ko 7.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{7±1}{2} ina he tāpiri te ±. Tāpiri 7 ki te 1.
x=4
Whakawehe 8 ki te 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{7±1}{2} ina he tango te ±. Tango 1 mai i 7.
x=3
Whakawehe 6 ki te 2.
x=4 x=3
Kua oti te whārite te whakatau.
3x^{2}-13x+12=\left(x-3\right)\times 2x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 3x-4 ka whakakotahi i ngā kupu rite.
3x^{2}-13x+12=\left(2x-6\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
3x^{2}-13x+12=2x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
3x^{2}-13x+12-2x^{2}=-6x
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}-13x+12=-6x
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}-13x+12+6x=0
Me tāpiri te 6x ki ngā taha e rua.
x^{2}-7x+12=0
Pahekotia te -13x me 6x, ka -7x.
x^{2}-7x=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
Tāpiri -12 ki te \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Whakarūnātia.
x=4 x=3
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}