Whakaoti mō x, y
x=5
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
xy+5x-2y-10=\left(x-1\right)\left(y+2\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te y+5.
xy+5x-2y-10=xy+2x-y-2
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te y+2.
xy+5x-2y-10-xy=2x-y-2
Tangohia te xy mai i ngā taha e rua.
5x-2y-10=2x-y-2
Pahekotia te xy me -xy, ka 0.
5x-2y-10-2x=-y-2
Tangohia te 2x mai i ngā taha e rua.
3x-2y-10=-y-2
Pahekotia te 5x me -2x, ka 3x.
3x-2y-10+y=-2
Me tāpiri te y ki ngā taha e rua.
3x-y-10=-2
Pahekotia te -2y me y, ka -y.
3x-y=-2+10
Me tāpiri te 10 ki ngā taha e rua.
3x-y=8
Tāpirihia te -2 ki te 10, ka 8.
yx+4y-3x-12=\left(x+7\right)\left(y-4\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te y-3 ki te x+4.
yx+4y-3x-12=xy-4x+7y-28
Whakamahia te āhuatanga tohatoha hei whakarea te x+7 ki te y-4.
yx+4y-3x-12-xy=-4x+7y-28
Tangohia te xy mai i ngā taha e rua.
4y-3x-12=-4x+7y-28
Pahekotia te yx me -xy, ka 0.
4y-3x-12+4x=7y-28
Me tāpiri te 4x ki ngā taha e rua.
4y+x-12=7y-28
Pahekotia te -3x me 4x, ka x.
4y+x-12-7y=-28
Tangohia te 7y mai i ngā taha e rua.
-3y+x-12=-28
Pahekotia te 4y me -7y, ka -3y.
-3y+x=-28+12
Me tāpiri te 12 ki ngā taha e rua.
-3y+x=-16
Tāpirihia te -28 ki te 12, ka -16.
3x-y=8,x-3y=-16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+8
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+8\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+\frac{8}{3}
Whakareatia \frac{1}{3} ki te y+8.
\frac{1}{3}y+\frac{8}{3}-3y=-16
Whakakapia te \frac{8+y}{3} mō te x ki tērā atu whārite, x-3y=-16.
-\frac{8}{3}y+\frac{8}{3}=-16
Tāpiri \frac{y}{3} ki te -3y.
-\frac{8}{3}y=-\frac{56}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 7+\frac{8}{3}
Whakaurua te 7 mō y ki x=\frac{1}{3}y+\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{7+8}{3}
Whakareatia \frac{1}{3} ki te 7.
x=5
Tāpiri \frac{8}{3} ki te \frac{7}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=7
Kua oti te pūnaha te whakatau.
xy+5x-2y-10=\left(x-1\right)\left(y+2\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te y+5.
xy+5x-2y-10=xy+2x-y-2
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te y+2.
xy+5x-2y-10-xy=2x-y-2
Tangohia te xy mai i ngā taha e rua.
5x-2y-10=2x-y-2
Pahekotia te xy me -xy, ka 0.
5x-2y-10-2x=-y-2
Tangohia te 2x mai i ngā taha e rua.
3x-2y-10=-y-2
Pahekotia te 5x me -2x, ka 3x.
3x-2y-10+y=-2
Me tāpiri te y ki ngā taha e rua.
3x-y-10=-2
Pahekotia te -2y me y, ka -y.
3x-y=-2+10
Me tāpiri te 10 ki ngā taha e rua.
3x-y=8
Tāpirihia te -2 ki te 10, ka 8.
yx+4y-3x-12=\left(x+7\right)\left(y-4\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te y-3 ki te x+4.
yx+4y-3x-12=xy-4x+7y-28
Whakamahia te āhuatanga tohatoha hei whakarea te x+7 ki te y-4.
yx+4y-3x-12-xy=-4x+7y-28
Tangohia te xy mai i ngā taha e rua.
4y-3x-12=-4x+7y-28
Pahekotia te yx me -xy, ka 0.
4y-3x-12+4x=7y-28
Me tāpiri te 4x ki ngā taha e rua.
4y+x-12=7y-28
Pahekotia te -3x me 4x, ka x.
4y+x-12-7y=-28
Tangohia te 7y mai i ngā taha e rua.
-3y+x-12=-28
Pahekotia te 4y me -7y, ka -3y.
-3y+x=-28+12
Me tāpiri te 12 ki ngā taha e rua.
-3y+x=-16
Tāpirihia te -28 ki te 12, ka -16.
3x-y=8,x-3y=-16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-\left(-1\right)}&-\frac{-1}{3\left(-3\right)-\left(-1\right)}\\-\frac{1}{3\left(-3\right)-\left(-1\right)}&\frac{3}{3\left(-3\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{8}\\\frac{1}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}8\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 8-\frac{1}{8}\left(-16\right)\\\frac{1}{8}\times 8-\frac{3}{8}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=7
Tangohia ngā huānga poukapa x me y.
xy+5x-2y-10=\left(x-1\right)\left(y+2\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te y+5.
xy+5x-2y-10=xy+2x-y-2
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te y+2.
xy+5x-2y-10-xy=2x-y-2
Tangohia te xy mai i ngā taha e rua.
5x-2y-10=2x-y-2
Pahekotia te xy me -xy, ka 0.
5x-2y-10-2x=-y-2
Tangohia te 2x mai i ngā taha e rua.
3x-2y-10=-y-2
Pahekotia te 5x me -2x, ka 3x.
3x-2y-10+y=-2
Me tāpiri te y ki ngā taha e rua.
3x-y-10=-2
Pahekotia te -2y me y, ka -y.
3x-y=-2+10
Me tāpiri te 10 ki ngā taha e rua.
3x-y=8
Tāpirihia te -2 ki te 10, ka 8.
yx+4y-3x-12=\left(x+7\right)\left(y-4\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te y-3 ki te x+4.
yx+4y-3x-12=xy-4x+7y-28
Whakamahia te āhuatanga tohatoha hei whakarea te x+7 ki te y-4.
yx+4y-3x-12-xy=-4x+7y-28
Tangohia te xy mai i ngā taha e rua.
4y-3x-12=-4x+7y-28
Pahekotia te yx me -xy, ka 0.
4y-3x-12+4x=7y-28
Me tāpiri te 4x ki ngā taha e rua.
4y+x-12=7y-28
Pahekotia te -3x me 4x, ka x.
4y+x-12-7y=-28
Tangohia te 7y mai i ngā taha e rua.
-3y+x-12=-28
Pahekotia te 4y me -7y, ka -3y.
-3y+x=-28+12
Me tāpiri te 12 ki ngā taha e rua.
-3y+x=-16
Tāpirihia te -28 ki te 12, ka -16.
3x-y=8,x-3y=-16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-y=8,3x+3\left(-3\right)y=3\left(-16\right)
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x-y=8,3x-9y=-48
Whakarūnātia.
3x-3x-y+9y=8+48
Me tango 3x-9y=-48 mai i 3x-y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+9y=8+48
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=8+48
Tāpiri -y ki te 9y.
8y=56
Tāpiri 8 ki te 48.
y=7
Whakawehea ngā taha e rua ki te 8.
x-3\times 7=-16
Whakaurua te 7 mō y ki x-3y=-16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-21=-16
Whakareatia -3 ki te 7.
x=5
Me tāpiri 21 ki ngā taha e rua o te whārite.
x=5,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}