Whakaoti mō x, ξ
x=12
\xi =1
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x=2x-3x+8x-24
Whakaarohia te whārite tuarua. Pahekotia te 2x me 3x, ka 5x.
5x=-x+8x-24
Pahekotia te 2x me -3x, ka -x.
5x=7x-24
Pahekotia te -x me 8x, ka 7x.
5x-7x=-24
Tangohia te 7x mai i ngā taha e rua.
-2x=-24
Pahekotia te 5x me -7x, ka -2x.
x=\frac{-24}{-2}
Whakawehea ngā taha e rua ki te -2.
x=12
Whakawehea te -24 ki te -2, kia riro ko 12.
\left(12+3\right)\times 12=\left(12+8\right)\left(12-3\right)\xi
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
15\times 12=\left(12+8\right)\left(12-3\right)\xi
Tāpirihia te 12 ki te 3, ka 15.
180=\left(12+8\right)\left(12-3\right)\xi
Whakareatia te 15 ki te 12, ka 180.
180=20\left(12-3\right)\xi
Tāpirihia te 12 ki te 8, ka 20.
180=20\times 9\xi
Tangohia te 3 i te 12, ka 9.
180=180\xi
Whakareatia te 20 ki te 9, ka 180.
180\xi =180
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\xi =\frac{180}{180}
Whakawehea ngā taha e rua ki te 180.
\xi =1
Whakawehea te 180 ki te 180, kia riro ko 1.
x=12 \xi =1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}