Whakaoti mō A, B
A=3
B = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
3A+3B-B=6
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te A+B ki te 3.
3A+2B=6
Pahekotia te 3B me -B, ka 2B.
\left(2A+B\right)\times 9-B=42
Whakaarohia te whārite tuarua. Tātaihia te 3 mā te pū o 2, kia riro ko 9.
18A+9B-B=42
Whakamahia te āhuatanga tohatoha hei whakarea te 2A+B ki te 9.
18A+8B=42
Pahekotia te 9B me -B, ka 8B.
3A+2B=6,18A+8B=42
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3A+2B=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te A mā te wehe i te A i te taha mauī o te tohu ōrite.
3A=-2B+6
Me tango 2B mai i ngā taha e rua o te whārite.
A=\frac{1}{3}\left(-2B+6\right)
Whakawehea ngā taha e rua ki te 3.
A=-\frac{2}{3}B+2
Whakareatia \frac{1}{3} ki te -2B+6.
18\left(-\frac{2}{3}B+2\right)+8B=42
Whakakapia te -\frac{2B}{3}+2 mō te A ki tērā atu whārite, 18A+8B=42.
-12B+36+8B=42
Whakareatia 18 ki te -\frac{2B}{3}+2.
-4B+36=42
Tāpiri -12B ki te 8B.
-4B=6
Me tango 36 mai i ngā taha e rua o te whārite.
B=-\frac{3}{2}
Whakawehea ngā taha e rua ki te -4.
A=-\frac{2}{3}\left(-\frac{3}{2}\right)+2
Whakaurua te -\frac{3}{2} mō B ki A=-\frac{2}{3}B+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A=1+2
Whakareatia -\frac{2}{3} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
A=3
Tāpiri 2 ki te 1.
A=3,B=-\frac{3}{2}
Kua oti te pūnaha te whakatau.
3A+3B-B=6
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te A+B ki te 3.
3A+2B=6
Pahekotia te 3B me -B, ka 2B.
\left(2A+B\right)\times 9-B=42
Whakaarohia te whārite tuarua. Tātaihia te 3 mā te pū o 2, kia riro ko 9.
18A+9B-B=42
Whakamahia te āhuatanga tohatoha hei whakarea te 2A+B ki te 9.
18A+8B=42
Pahekotia te 9B me -B, ka 8B.
3A+2B=6,18A+8B=42
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\18&8\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}6\\42\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}3&2\\18&8\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}6\\42\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\18&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}6\\42\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}6\\42\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-2\times 18}&-\frac{2}{3\times 8-2\times 18}\\-\frac{18}{3\times 8-2\times 18}&\frac{3}{3\times 8-2\times 18}\end{matrix}\right)\left(\begin{matrix}6\\42\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{6}\\\frac{3}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\42\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 6+\frac{1}{6}\times 42\\\frac{3}{2}\times 6-\frac{1}{4}\times 42\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
A=3,B=-\frac{3}{2}
Tangohia ngā huānga poukapa A me B.
3A+3B-B=6
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te A+B ki te 3.
3A+2B=6
Pahekotia te 3B me -B, ka 2B.
\left(2A+B\right)\times 9-B=42
Whakaarohia te whārite tuarua. Tātaihia te 3 mā te pū o 2, kia riro ko 9.
18A+9B-B=42
Whakamahia te āhuatanga tohatoha hei whakarea te 2A+B ki te 9.
18A+8B=42
Pahekotia te 9B me -B, ka 8B.
3A+2B=6,18A+8B=42
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
18\times 3A+18\times 2B=18\times 6,3\times 18A+3\times 8B=3\times 42
Kia ōrite ai a 3A me 18A, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 18 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
54A+36B=108,54A+24B=126
Whakarūnātia.
54A-54A+36B-24B=108-126
Me tango 54A+24B=126 mai i 54A+36B=108 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36B-24B=108-126
Tāpiri 54A ki te -54A. Ka whakakore atu ngā kupu 54A me -54A, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
12B=108-126
Tāpiri 36B ki te -24B.
12B=-18
Tāpiri 108 ki te -126.
B=-\frac{3}{2}
Whakawehea ngā taha e rua ki te 12.
18A+8\left(-\frac{3}{2}\right)=42
Whakaurua te -\frac{3}{2} mō B ki 18A+8B=42. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
18A-12=42
Whakareatia 8 ki te -\frac{3}{2}.
18A=54
Me tāpiri 12 ki ngā taha e rua o te whārite.
A=3
Whakawehea ngā taha e rua ki te 18.
A=3,B=-\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}