Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+9x+2+2x-3
Pahekotia te 4x^{2} me -2x^{2}, ka 2x^{2}.
2x^{2}+11x+2-3
Pahekotia te 9x me 2x, ka 11x.
2x^{2}+11x-1
Tangohia te 3 i te 2, ka -1.
factor(2x^{2}+9x+2+2x-3)
Pahekotia te 4x^{2} me -2x^{2}, ka 2x^{2}.
factor(2x^{2}+11x+2-3)
Pahekotia te 9x me 2x, ka 11x.
factor(2x^{2}+11x-1)
Tangohia te 3 i te 2, ka -1.
2x^{2}+11x-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{121-4\times 2\left(-1\right)}}{2\times 2}
Pūrua 11.
x=\frac{-11±\sqrt{121-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-11±\sqrt{121+8}}{2\times 2}
Whakareatia -8 ki te -1.
x=\frac{-11±\sqrt{129}}{2\times 2}
Tāpiri 121 ki te 8.
x=\frac{-11±\sqrt{129}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{129}-11}{4}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{129}}{4} ina he tāpiri te ±. Tāpiri -11 ki te \sqrt{129}.
x=\frac{-\sqrt{129}-11}{4}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{129}}{4} ina he tango te ±. Tango \sqrt{129} mai i -11.
2x^{2}+11x-1=2\left(x-\frac{\sqrt{129}-11}{4}\right)\left(x-\frac{-\sqrt{129}-11}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-11+\sqrt{129}}{4} mō te x_{1} me te \frac{-11-\sqrt{129}}{4} mō te x_{2}.