\left. \begin{array} { l } { ( 4 - \sqrt { 3 } ) ( 4 + \sqrt { 3 } ) } \\ { ( 1 + \sqrt { 5 } ) ^ { 2 } - \sqrt { 20 } } \end{array} \right.
Kōmaka
6,13
Aromātai
13,\ 6
Tohaina
Kua tāruatia ki te papatopenga
sort(16-\left(\sqrt{3}\right)^{2},\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Whakaarohia te \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
sort(16-3,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Ko te pūrua o \sqrt{3} ko 3.
sort(13,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Tangohia te 3 i te 16, ka 13.
sort(13,1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{20})
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{5}\right)^{2}.
sort(13,1+2\sqrt{5}+5-\sqrt{20})
Ko te pūrua o \sqrt{5} ko 5.
sort(13,6+2\sqrt{5}-\sqrt{20})
Tāpirihia te 1 ki te 5, ka 6.
sort(13,6+2\sqrt{5}-2\sqrt{5})
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
sort(13,6)
Pahekotia te 2\sqrt{5} me -2\sqrt{5}, ka 0.
13
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga 13 kotahi.
6,13
Me kōkuhu te 6 ki te tauwāhi tika i te rārangi hōu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}