Tīpoka ki ngā ihirangi matua
Kōmaka
Tick mark Image
Aromātai
Tick mark Image

Tohaina

sort(16-\left(\sqrt{3}\right)^{2},\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Whakaarohia te \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
sort(16-3,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Ko te pūrua o \sqrt{3} ko 3.
sort(13,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
Tangohia te 3 i te 16, ka 13.
sort(13,1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{20})
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{5}\right)^{2}.
sort(13,1+2\sqrt{5}+5-\sqrt{20})
Ko te pūrua o \sqrt{5} ko 5.
sort(13,6+2\sqrt{5}-\sqrt{20})
Tāpirihia te 1 ki te 5, ka 6.
sort(13,6+2\sqrt{5}-2\sqrt{5})
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
sort(13,6)
Pahekotia te 2\sqrt{5} me -2\sqrt{5}, ka 0.
13
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga 13 kotahi.
6,13
Me kōkuhu te 6 ki te tauwāhi tika i te rārangi hōu.