Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-m\right)^{2}+12\left(-m\right)+36-\left(m-6\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-m+6\right)^{2}.
m^{2}+12\left(-m\right)+36-\left(m-6\right)^{2}
Tātaihia te -m mā te pū o 2, kia riro ko m^{2}.
m^{2}+12\left(-m\right)+36-\left(m^{2}-12m+36\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(m-6\right)^{2}.
m^{2}+12\left(-m\right)+36-m^{2}+12m-36
Hei kimi i te tauaro o m^{2}-12m+36, kimihia te tauaro o ia taurangi.
12\left(-m\right)+36+12m-36
Pahekotia te m^{2} me -m^{2}, ka 0.
12\left(-m\right)+12m
Tangohia te 36 i te 36, ka 0.
-12m+12m
Whakareatia te 12 ki te -1, ka -12.
0
Pahekotia te -12m me 12m, ka 0.
0
Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
2\left(-m+6\right)
Whakaarohia te -2m+12. Tauwehea te 2.
0
Me tuhi anō te kīanga whakatauwehe katoa. Whakarūnātia.