Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=0
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te -2. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
y=\left(\sqrt{3}-1\right)^{2}+\left(2\times 0-2\right)\left(\sqrt{3}-1\right)+2
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1+\left(2\times 0-2\right)\left(\sqrt{3}-1\right)+2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-1\right)^{2}.
y=3-2\sqrt{3}+1+\left(2\times 0-2\right)\left(\sqrt{3}-1\right)+2
Ko te pūrua o \sqrt{3} ko 3.
y=4-2\sqrt{3}+\left(2\times 0-2\right)\left(\sqrt{3}-1\right)+2
Tāpirihia te 3 ki te 1, ka 4.
y=4-2\sqrt{3}+\left(0-2\right)\left(\sqrt{3}-1\right)+2
Whakareatia te 2 ki te 0, ka 0.
y=4-2\sqrt{3}-2\left(\sqrt{3}-1\right)+2
Tangohia te 2 i te 0, ka -2.
y=4-2\sqrt{3}-2\sqrt{3}+2+2
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te \sqrt{3}-1.
y=4-4\sqrt{3}+2+2
Pahekotia te -2\sqrt{3} me -2\sqrt{3}, ka -4\sqrt{3}.
y=6-4\sqrt{3}+2
Tāpirihia te 4 ki te 2, ka 6.
y=8-4\sqrt{3}
Tāpirihia te 6 ki te 2, ka 8.
x=0 y=8-4\sqrt{3}
Kua oti te pūnaha te whakatau.