Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1+\left(2\sqrt{2}-1\right)^{2}+2\sqrt{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{2}-1\right)^{2}.
2-2\sqrt{2}+1+\left(2\sqrt{2}-1\right)^{2}+2\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
3-2\sqrt{2}+\left(2\sqrt{2}-1\right)^{2}+2\sqrt{2}
Tāpirihia te 2 ki te 1, ka 3.
3-2\sqrt{2}+4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+2\sqrt{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{2}-1\right)^{2}.
3-2\sqrt{2}+4\times 2-4\sqrt{2}+1+2\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
3-2\sqrt{2}+8-4\sqrt{2}+1+2\sqrt{2}
Whakareatia te 4 ki te 2, ka 8.
3-2\sqrt{2}+9-4\sqrt{2}+2\sqrt{2}
Tāpirihia te 8 ki te 1, ka 9.
12-2\sqrt{2}-4\sqrt{2}+2\sqrt{2}
Tāpirihia te 3 ki te 9, ka 12.
12-6\sqrt{2}+2\sqrt{2}
Pahekotia te -2\sqrt{2} me -4\sqrt{2}, ka -6\sqrt{2}.
12-4\sqrt{2}
Pahekotia te -6\sqrt{2} me 2\sqrt{2}, ka -4\sqrt{2}.