Aromātai
\frac{k^{2}}{2}+2k+11
Whakaroha
\frac{k^{2}}{2}+2k+11
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(k-4\right)^{2}}{2^{2}}+\left(\frac{2+k}{2}\right)^{2}+3k+6
Kia whakarewa i te \frac{k-4}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(k-4\right)^{2}}{2^{2}}+\frac{\left(2+k\right)^{2}}{2^{2}}+3k+6
Kia whakarewa i te \frac{2+k}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(k-4\right)^{2}+\left(2+k\right)^{2}}{2^{2}}+3k+6
Tā te mea he rite te tauraro o \frac{\left(k-4\right)^{2}}{2^{2}} me \frac{\left(2+k\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{k^{2}-8k+16+4+4k+k^{2}}{2^{2}}+3k+6
Mahia ngā whakarea i roto o \left(k-4\right)^{2}+\left(2+k\right)^{2}.
\frac{2k^{2}-4k+20}{2^{2}}+3k+6
Whakakotahitia ngā kupu rite i k^{2}-8k+16+4+4k+k^{2}.
\frac{2\left(k^{2}-2k+10\right)}{2^{2}}+3k+6
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2k^{2}-4k+20}{2^{2}}.
\frac{k^{2}-2k+10}{2}+3k+6
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{k^{2}-2k+10}{2}+\frac{2\left(3k+6\right)}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3k+6 ki te \frac{2}{2}.
\frac{k^{2}-2k+10+2\left(3k+6\right)}{2}
Tā te mea he rite te tauraro o \frac{k^{2}-2k+10}{2} me \frac{2\left(3k+6\right)}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{k^{2}-2k+10+6k+12}{2}
Mahia ngā whakarea i roto o k^{2}-2k+10+2\left(3k+6\right).
\frac{k^{2}+4k+22}{2}
Whakakotahitia ngā kupu rite i k^{2}-2k+10+6k+12.
\frac{\left(k-4\right)^{2}}{2^{2}}+\left(\frac{2+k}{2}\right)^{2}+3k+6
Kia whakarewa i te \frac{k-4}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(k-4\right)^{2}}{2^{2}}+\frac{\left(2+k\right)^{2}}{2^{2}}+3k+6
Kia whakarewa i te \frac{2+k}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(k-4\right)^{2}+\left(2+k\right)^{2}}{2^{2}}+3k+6
Tā te mea he rite te tauraro o \frac{\left(k-4\right)^{2}}{2^{2}} me \frac{\left(2+k\right)^{2}}{2^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{k^{2}-8k+16+4+4k+k^{2}}{2^{2}}+3k+6
Mahia ngā whakarea i roto o \left(k-4\right)^{2}+\left(2+k\right)^{2}.
\frac{2k^{2}-4k+20}{2^{2}}+3k+6
Whakakotahitia ngā kupu rite i k^{2}-8k+16+4+4k+k^{2}.
\frac{2\left(k^{2}-2k+10\right)}{2^{2}}+3k+6
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2k^{2}-4k+20}{2^{2}}.
\frac{k^{2}-2k+10}{2}+3k+6
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{k^{2}-2k+10}{2}+\frac{2\left(3k+6\right)}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3k+6 ki te \frac{2}{2}.
\frac{k^{2}-2k+10+2\left(3k+6\right)}{2}
Tā te mea he rite te tauraro o \frac{k^{2}-2k+10}{2} me \frac{2\left(3k+6\right)}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{k^{2}-2k+10+6k+12}{2}
Mahia ngā whakarea i roto o k^{2}-2k+10+2\left(3k+6\right).
\frac{k^{2}+4k+22}{2}
Whakakotahitia ngā kupu rite i k^{2}-2k+10+6k+12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}