Whakaoti mō x_2, x_3, x_1
x_{2}=1
x_{3}=3
x_{1}=-6
Tohaina
Kua tāruatia ki te papatopenga
x_{3}=-3x_{2}+6
Me whakaoti te -3x_{2}-x_{3}+6=0 mō x_{3}.
3x_{1}+4x_{2}+3\left(-3x_{2}+6\right)+5=0 x_{1}+x_{2}-3x_{2}+6+2=0
Whakakapia te -3x_{2}+6 mō te x_{3} i te whārite tuarua me te tuatoru.
x_{2}=\frac{3}{5}x_{1}+\frac{23}{5} x_{1}=-8+2x_{2}
Me whakaoti ēnei whārite mō x_{2} me x_{1} takitahi.
x_{1}=-8+2\left(\frac{3}{5}x_{1}+\frac{23}{5}\right)
Whakakapia te \frac{3}{5}x_{1}+\frac{23}{5} mō te x_{2} i te whārite x_{1}=-8+2x_{2}.
x_{1}=-6
Me whakaoti te x_{1}=-8+2\left(\frac{3}{5}x_{1}+\frac{23}{5}\right) mō x_{1}.
x_{2}=\frac{3}{5}\left(-6\right)+\frac{23}{5}
Whakakapia te -6 mō te x_{1} i te whārite x_{2}=\frac{3}{5}x_{1}+\frac{23}{5}.
x_{2}=1
Tātaitia te x_{2} i te x_{2}=\frac{3}{5}\left(-6\right)+\frac{23}{5}.
x_{3}=-3+6
Whakakapia te 1 mō te x_{2} i te whārite x_{3}=-3x_{2}+6.
x_{3}=3
Tātaitia te x_{3} i te x_{3}=-3+6.
x_{2}=1 x_{3}=3 x_{1}=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}