Tīpoka ki ngā ihirangi matua
Whakaoti mō x_2, x_3, x_1
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x_{3}=-3x_{2}+6
Me whakaoti te -3x_{2}-x_{3}+6=0 mō x_{3}.
3x_{1}+4x_{2}+3\left(-3x_{2}+6\right)+5=0 x_{1}+x_{2}-3x_{2}+6+2=0
Whakakapia te -3x_{2}+6 mō te x_{3} i te whārite tuarua me te tuatoru.
x_{2}=\frac{3}{5}x_{1}+\frac{23}{5} x_{1}=-8+2x_{2}
Me whakaoti ēnei whārite mō x_{2} me x_{1} takitahi.
x_{1}=-8+2\left(\frac{3}{5}x_{1}+\frac{23}{5}\right)
Whakakapia te \frac{3}{5}x_{1}+\frac{23}{5} mō te x_{2} i te whārite x_{1}=-8+2x_{2}.
x_{1}=-6
Me whakaoti te x_{1}=-8+2\left(\frac{3}{5}x_{1}+\frac{23}{5}\right) mō x_{1}.
x_{2}=\frac{3}{5}\left(-6\right)+\frac{23}{5}
Whakakapia te -6 mō te x_{1} i te whārite x_{2}=\frac{3}{5}x_{1}+\frac{23}{5}.
x_{2}=1
Tātaitia te x_{2} i te x_{2}=\frac{3}{5}\left(-6\right)+\frac{23}{5}.
x_{3}=-3+6
Whakakapia te 1 mō te x_{2} i te whārite x_{3}=-3x_{2}+6.
x_{3}=3
Tātaitia te x_{3} i te x_{3}=-3+6.
x_{2}=1 x_{3}=3 x_{1}=-6
Kua oti te pūnaha te whakatau.