Whakaoti mō x, y
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
y = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=-2
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
5x-2y=4,x-y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-2y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=2y+4
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(2y+4\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{2}{5}y+\frac{4}{5}
Whakareatia \frac{1}{5} ki te 4+2y.
\frac{2}{5}y+\frac{4}{5}-y=-2
Whakakapia te \frac{4+2y}{5} mō te x ki tērā atu whārite, x-y=-2.
-\frac{3}{5}y+\frac{4}{5}=-2
Tāpiri \frac{2y}{5} ki te -y.
-\frac{3}{5}y=-\frac{14}{5}
Me tango \frac{4}{5} mai i ngā taha e rua o te whārite.
y=\frac{14}{3}
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{5}\times \frac{14}{3}+\frac{4}{5}
Whakaurua te \frac{14}{3} mō y ki x=\frac{2}{5}y+\frac{4}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{28}{15}+\frac{4}{5}
Whakareatia \frac{2}{5} ki te \frac{14}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8}{3}
Tāpiri \frac{4}{5} ki te \frac{28}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8}{3},y=\frac{14}{3}
Kua oti te pūnaha te whakatau.
x-y=-2
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
5x-2y=4,x-y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-2\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\right)}&-\frac{-2}{5\left(-1\right)-\left(-2\right)}\\-\frac{1}{5\left(-1\right)-\left(-2\right)}&\frac{5}{5\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4-\frac{2}{3}\left(-2\right)\\\frac{1}{3}\times 4-\frac{5}{3}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\\frac{14}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{8}{3},y=\frac{14}{3}
Tangohia ngā huānga poukapa x me y.
x-y=-2
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
5x-2y=4,x-y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-2y=4,5x+5\left(-1\right)y=5\left(-2\right)
Kia ōrite ai a 5x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
5x-2y=4,5x-5y=-10
Whakarūnātia.
5x-5x-2y+5y=4+10
Me tango 5x-5y=-10 mai i 5x-2y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+5y=4+10
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=4+10
Tāpiri -2y ki te 5y.
3y=14
Tāpiri 4 ki te 10.
y=\frac{14}{3}
Whakawehea ngā taha e rua ki te 3.
x-\frac{14}{3}=-2
Whakaurua te \frac{14}{3} mō y ki x-y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8}{3}
Me tāpiri \frac{14}{3} ki ngā taha e rua o te whārite.
x=\frac{8}{3},y=\frac{14}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}