Whakaoti mō x
x = \frac{\sqrt{553} + 29}{6} \approx 8.752658672
x=\frac{29-\sqrt{553}}{6}\approx 0.914007995
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-20x+25-\left(x+1\right)^{2}=7x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-20x+25-\left(x^{2}+2x+1\right)=7x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
4x^{2}-20x+25-x^{2}-2x-1=7x
Hei kimi i te tauaro o x^{2}+2x+1, kimihia te tauaro o ia taurangi.
3x^{2}-20x+25-2x-1=7x
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}-22x+25-1=7x
Pahekotia te -20x me -2x, ka -22x.
3x^{2}-22x+24=7x
Tangohia te 1 i te 25, ka 24.
3x^{2}-22x+24-7x=0
Tangohia te 7x mai i ngā taha e rua.
3x^{2}-29x+24=0
Pahekotia te -22x me -7x, ka -29x.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 3\times 24}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -29 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 3\times 24}}{2\times 3}
Pūrua -29.
x=\frac{-\left(-29\right)±\sqrt{841-12\times 24}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-29\right)±\sqrt{841-288}}{2\times 3}
Whakareatia -12 ki te 24.
x=\frac{-\left(-29\right)±\sqrt{553}}{2\times 3}
Tāpiri 841 ki te -288.
x=\frac{29±\sqrt{553}}{2\times 3}
Ko te tauaro o -29 ko 29.
x=\frac{29±\sqrt{553}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{553}+29}{6}
Nā, me whakaoti te whārite x=\frac{29±\sqrt{553}}{6} ina he tāpiri te ±. Tāpiri 29 ki te \sqrt{553}.
x=\frac{29-\sqrt{553}}{6}
Nā, me whakaoti te whārite x=\frac{29±\sqrt{553}}{6} ina he tango te ±. Tango \sqrt{553} mai i 29.
x=\frac{\sqrt{553}+29}{6} x=\frac{29-\sqrt{553}}{6}
Kua oti te whārite te whakatau.
4x^{2}-20x+25-\left(x+1\right)^{2}=7x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-20x+25-\left(x^{2}+2x+1\right)=7x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
4x^{2}-20x+25-x^{2}-2x-1=7x
Hei kimi i te tauaro o x^{2}+2x+1, kimihia te tauaro o ia taurangi.
3x^{2}-20x+25-2x-1=7x
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}-22x+25-1=7x
Pahekotia te -20x me -2x, ka -22x.
3x^{2}-22x+24=7x
Tangohia te 1 i te 25, ka 24.
3x^{2}-22x+24-7x=0
Tangohia te 7x mai i ngā taha e rua.
3x^{2}-29x+24=0
Pahekotia te -22x me -7x, ka -29x.
3x^{2}-29x=-24
Tangohia te 24 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{3x^{2}-29x}{3}=-\frac{24}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{29}{3}x=-\frac{24}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{29}{3}x=-8
Whakawehe -24 ki te 3.
x^{2}-\frac{29}{3}x+\left(-\frac{29}{6}\right)^{2}=-8+\left(-\frac{29}{6}\right)^{2}
Whakawehea te -\frac{29}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{29}{6}. Nā, tāpiria te pūrua o te -\frac{29}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{29}{3}x+\frac{841}{36}=-8+\frac{841}{36}
Pūruatia -\frac{29}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{29}{3}x+\frac{841}{36}=\frac{553}{36}
Tāpiri -8 ki te \frac{841}{36}.
\left(x-\frac{29}{6}\right)^{2}=\frac{553}{36}
Tauwehea x^{2}-\frac{29}{3}x+\frac{841}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{6}\right)^{2}}=\sqrt{\frac{553}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{29}{6}=\frac{\sqrt{553}}{6} x-\frac{29}{6}=-\frac{\sqrt{553}}{6}
Whakarūnātia.
x=\frac{\sqrt{553}+29}{6} x=\frac{29-\sqrt{553}}{6}
Me tāpiri \frac{29}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}