\left. \begin{array} { l } { \text { 17 } ( - 48 ) \times ( 1 \frac { 2 } { 3 } - \frac { 3 } { 8 } + \frac { 5 } { 24 } ) } \\ { - ( - 118 ) \times 2 } \end{array} \right.
Aromātai
-988
Tauwehe
-988
Tohaina
Kua tāruatia ki te papatopenga
-816\left(\frac{3+2}{3}-\frac{3}{8}+\frac{5}{24}\right)-\left(-118\times 2\right)
Whakareatia te 17 ki te -48, ka -816.
-816\left(\frac{5}{3}-\frac{3}{8}+\frac{5}{24}\right)-\left(-118\times 2\right)
Tāpirihia te 3 ki te 2, ka 5.
-816\left(\frac{40}{24}-\frac{9}{24}+\frac{5}{24}\right)-\left(-118\times 2\right)
Ko te maha noa iti rawa atu o 3 me 8 ko 24. Me tahuri \frac{5}{3} me \frac{3}{8} ki te hautau me te tautūnga 24.
-816\left(\frac{40-9}{24}+\frac{5}{24}\right)-\left(-118\times 2\right)
Tā te mea he rite te tauraro o \frac{40}{24} me \frac{9}{24}, me tango rāua mā te tango i ō raua taurunga.
-816\left(\frac{31}{24}+\frac{5}{24}\right)-\left(-118\times 2\right)
Tangohia te 9 i te 40, ka 31.
-816\times \frac{31+5}{24}-\left(-118\times 2\right)
Tā te mea he rite te tauraro o \frac{31}{24} me \frac{5}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-816\times \frac{36}{24}-\left(-118\times 2\right)
Tāpirihia te 31 ki te 5, ka 36.
-816\times \frac{3}{2}-\left(-118\times 2\right)
Whakahekea te hautanga \frac{36}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{-816\times 3}{2}-\left(-118\times 2\right)
Tuhia te -816\times \frac{3}{2} hei hautanga kotahi.
\frac{-2448}{2}-\left(-118\times 2\right)
Whakareatia te -816 ki te 3, ka -2448.
-1224-\left(-118\times 2\right)
Whakawehea te -2448 ki te 2, kia riro ko -1224.
-1224-\left(-236\right)
Whakareatia te -118 ki te 2, ka -236.
-1224+236
Ko te tauaro o -236 ko 236.
-988
Tāpirihia te -1224 ki te 236, ka -988.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}