Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}\\x=-a\text{, }y=-b\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }y=-b\text{, }&m_{2}=0\text{ and }m_{1}=0\\x=\frac{y-am_{2}+b}{m_{2}}\text{, }y\in \mathrm{C}\text{, }&m_{2}\neq 0\text{ and }m_{1}=m_{2}\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}\\x=-a\text{, }y=-b\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }y=-b\text{, }&m_{2}=0\text{ and }m_{1}=0\\x=\frac{y-am_{2}+b}{m_{2}}\text{, }y\in \mathrm{R}\text{, }&m_{2}\neq 0\text{ and }m_{1}=m_{2}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+b=m_{1}x+m_{1}a
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te m_{1} ki te x+a.
y+b-m_{1}x=m_{1}a
Tangohia te m_{1}x mai i ngā taha e rua.
y-m_{1}x=m_{1}a-b
Tangohia te b mai i ngā taha e rua.
y+b=m_{2}x+m_{2}a
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te m_{2} ki te x+a.
y+b-m_{2}x=m_{2}a
Tangohia te m_{2}x mai i ngā taha e rua.
y-m_{2}x=m_{2}a-b
Tangohia te b mai i ngā taha e rua.
y+\left(-m_{1}\right)x=am_{1}-b,y+\left(-m_{2}\right)x=am_{2}-b
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+\left(-m_{1}\right)x=am_{1}-b
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=m_{1}x+am_{1}-b
Me tāpiri m_{1}x ki ngā taha e rua o te whārite.
m_{1}x+am_{1}-b+\left(-m_{2}\right)x=am_{2}-b
Whakakapia te m_{1}x+am_{1}-b mō te y ki tērā atu whārite, y+\left(-m_{2}\right)x=am_{2}-b.
\left(m_{1}-m_{2}\right)x+am_{1}-b=am_{2}-b
Tāpiri m_{1}x ki te -m_{2}x.
\left(m_{1}-m_{2}\right)x=a\left(m_{2}-m_{1}\right)
Me tango am_{1}-b mai i ngā taha e rua o te whārite.
x=-a
Whakawehea ngā taha e rua ki te m_{1}-m_{2}.
y=m_{1}\left(-a\right)+am_{1}-b
Whakaurua te -a mō x ki y=m_{1}x+am_{1}-b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-am_{1}+am_{1}-b
Whakareatia m_{1} ki te -a.
y=-b
Tāpiri am_{1}-b ki te -m_{1}a.
y=-b,x=-a
Kua oti te pūnaha te whakatau.
y+b=m_{1}x+m_{1}a
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te m_{1} ki te x+a.
y+b-m_{1}x=m_{1}a
Tangohia te m_{1}x mai i ngā taha e rua.
y-m_{1}x=m_{1}a-b
Tangohia te b mai i ngā taha e rua.
y+b=m_{2}x+m_{2}a
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te m_{2} ki te x+a.
y+b-m_{2}x=m_{2}a
Tangohia te m_{2}x mai i ngā taha e rua.
y-m_{2}x=m_{2}a-b
Tangohia te b mai i ngā taha e rua.
y+\left(-m_{1}\right)x=am_{1}-b,y+\left(-m_{2}\right)x=am_{2}-b
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{m_{2}}{-m_{2}-\left(-m_{1}\right)}&-\frac{-m_{1}}{-m_{2}-\left(-m_{1}\right)}\\-\frac{1}{-m_{2}-\left(-m_{1}\right)}&\frac{1}{-m_{2}-\left(-m_{1}\right)}\end{matrix}\right)\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{m_{2}}{m_{1}-m_{2}}&\frac{m_{1}}{m_{1}-m_{2}}\\-\frac{1}{m_{1}-m_{2}}&\frac{1}{m_{1}-m_{2}}\end{matrix}\right)\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{m_{2}}{m_{1}-m_{2}}\right)\left(am_{1}-b\right)+\frac{m_{1}}{m_{1}-m_{2}}\left(am_{2}-b\right)\\\left(-\frac{1}{m_{1}-m_{2}}\right)\left(am_{1}-b\right)+\frac{1}{m_{1}-m_{2}}\left(am_{2}-b\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-b\\-a\end{matrix}\right)
Mahia ngā tātaitanga.
y=-b,x=-a
Tangohia ngā huānga poukapa y me x.
y+b=m_{1}x+m_{1}a
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te m_{1} ki te x+a.
y+b-m_{1}x=m_{1}a
Tangohia te m_{1}x mai i ngā taha e rua.
y-m_{1}x=m_{1}a-b
Tangohia te b mai i ngā taha e rua.
y+b=m_{2}x+m_{2}a
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te m_{2} ki te x+a.
y+b-m_{2}x=m_{2}a
Tangohia te m_{2}x mai i ngā taha e rua.
y-m_{2}x=m_{2}a-b
Tangohia te b mai i ngā taha e rua.
y+\left(-m_{1}\right)x=am_{1}-b,y+\left(-m_{2}\right)x=am_{2}-b
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+\left(-m_{1}\right)x+m_{2}x=am_{1}-b+b-am_{2}
Me tango y+\left(-m_{2}\right)x=am_{2}-b mai i y+\left(-m_{1}\right)x=am_{1}-b mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-m_{1}\right)x+m_{2}x=am_{1}-b+b-am_{2}
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(m_{2}-m_{1}\right)x=am_{1}-b+b-am_{2}
Tāpiri -m_{1}x ki te m_{2}x.
\left(m_{2}-m_{1}\right)x=a\left(m_{1}-m_{2}\right)
Tāpiri am_{1}-b ki te -m_{2}a+b.
x=-a
Whakawehea ngā taha e rua ki te -m_{1}+m_{2}.
y+\left(-m_{2}\right)\left(-a\right)=am_{2}-b
Whakaurua te -a mō x ki y+\left(-m_{2}\right)x=am_{2}-b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+am_{2}=am_{2}-b
Whakareatia -m_{2} ki te -a.
y=-b
Me tango m_{2}a mai i ngā taha e rua o te whārite.
y=-b,x=-a
Kua oti te pūnaha te whakatau.
y+b=m_{1}x+m_{1}a
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te m_{1} ki te x+a.
y+b-m_{1}x=m_{1}a
Tangohia te m_{1}x mai i ngā taha e rua.
y-m_{1}x=m_{1}a-b
Tangohia te b mai i ngā taha e rua.
y+b=m_{2}x+m_{2}a
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te m_{2} ki te x+a.
y+b-m_{2}x=m_{2}a
Tangohia te m_{2}x mai i ngā taha e rua.
y-m_{2}x=m_{2}a-b
Tangohia te b mai i ngā taha e rua.
y+\left(-m_{1}\right)x=am_{1}-b,y+\left(-m_{2}\right)x=am_{2}-b
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+\left(-m_{1}\right)x=am_{1}-b
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=m_{1}x+am_{1}-b
Me tāpiri m_{1}x ki ngā taha e rua o te whārite.
m_{1}x+am_{1}-b+\left(-m_{2}\right)x=am_{2}-b
Whakakapia te m_{1}x+am_{1}-b mō te y ki tērā atu whārite, y+\left(-m_{2}\right)x=am_{2}-b.
\left(m_{1}-m_{2}\right)x+am_{1}-b=am_{2}-b
Tāpiri m_{1}x ki te -m_{2}x.
\left(m_{1}-m_{2}\right)x=a\left(m_{2}-m_{1}\right)
Me tango am_{1}-b mai i ngā taha e rua o te whārite.
x=-a
Whakawehea ngā taha e rua ki te m_{1}-m_{2}.
y=m_{1}\left(-a\right)+am_{1}-b
Whakaurua te -a mō x ki y=m_{1}x+am_{1}-b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-am_{1}+am_{1}-b
Whakareatia m_{1} ki te -a.
y=-b
Tāpiri am_{1}-b ki te -m_{1}a.
y=-b,x=-a
Kua oti te pūnaha te whakatau.
y+b=m_{1}x+m_{1}a
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te m_{1} ki te x+a.
y+b-m_{1}x=m_{1}a
Tangohia te m_{1}x mai i ngā taha e rua.
y-m_{1}x=m_{1}a-b
Tangohia te b mai i ngā taha e rua.
y+b=m_{2}x+m_{2}a
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te m_{2} ki te x+a.
y+b-m_{2}x=m_{2}a
Tangohia te m_{2}x mai i ngā taha e rua.
y-m_{2}x=m_{2}a-b
Tangohia te b mai i ngā taha e rua.
y+\left(-m_{1}\right)x=am_{1}-b,y+\left(-m_{2}\right)x=am_{2}-b
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m_{1}\\1&-m_{2}\end{matrix}\right))\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{m_{2}}{-m_{2}-\left(-m_{1}\right)}&-\frac{-m_{1}}{-m_{2}-\left(-m_{1}\right)}\\-\frac{1}{-m_{2}-\left(-m_{1}\right)}&\frac{1}{-m_{2}-\left(-m_{1}\right)}\end{matrix}\right)\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{m_{2}}{m_{1}-m_{2}}&\frac{m_{1}}{m_{1}-m_{2}}\\-\frac{1}{m_{1}-m_{2}}&\frac{1}{m_{1}-m_{2}}\end{matrix}\right)\left(\begin{matrix}am_{1}-b\\am_{2}-b\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{m_{2}}{m_{1}-m_{2}}\right)\left(am_{1}-b\right)+\frac{m_{1}}{m_{1}-m_{2}}\left(am_{2}-b\right)\\\left(-\frac{1}{m_{1}-m_{2}}\right)\left(am_{1}-b\right)+\frac{1}{m_{1}-m_{2}}\left(am_{2}-b\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-b\\-a\end{matrix}\right)
Mahia ngā tātaitanga.
y=-b,x=-a
Tangohia ngā huānga poukapa y me x.
y+b=m_{1}x+m_{1}a
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te m_{1} ki te x+a.
y+b-m_{1}x=m_{1}a
Tangohia te m_{1}x mai i ngā taha e rua.
y-m_{1}x=m_{1}a-b
Tangohia te b mai i ngā taha e rua.
y+b=m_{2}x+m_{2}a
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te m_{2} ki te x+a.
y+b-m_{2}x=m_{2}a
Tangohia te m_{2}x mai i ngā taha e rua.
y-m_{2}x=m_{2}a-b
Tangohia te b mai i ngā taha e rua.
y+\left(-m_{1}\right)x=am_{1}-b,y+\left(-m_{2}\right)x=am_{2}-b
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+\left(-m_{1}\right)x+m_{2}x=am_{1}-b+b-am_{2}
Me tango y+\left(-m_{2}\right)x=am_{2}-b mai i y+\left(-m_{1}\right)x=am_{1}-b mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-m_{1}\right)x+m_{2}x=am_{1}-b+b-am_{2}
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(m_{2}-m_{1}\right)x=am_{1}-b+b-am_{2}
Tāpiri -m_{1}x ki te m_{2}x.
\left(m_{2}-m_{1}\right)x=a\left(m_{1}-m_{2}\right)
Tāpiri am_{1}-b ki te -m_{2}a+b.
x=-a
Whakawehea ngā taha e rua ki te -m_{1}+m_{2}.
y+\left(-m_{2}\right)\left(-a\right)=am_{2}-b
Whakaurua te -a mō x ki y+\left(-m_{2}\right)x=am_{2}-b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+am_{2}=am_{2}-b
Whakareatia -m_{2} ki te -a.
y=-b
Me tango m_{2}a mai i ngā taha e rua o te whārite.
y=-b,x=-a
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}