Whakaoti mō x, y
x=2
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-2y=\frac{4}{2}
Whakaarohia te whārite tuarua. Whakawehea ngā taha e rua ki te 2.
x-2y=2
Whakawehea te 4 ki te 2, kia riro ko 2.
8x+4y=16,x-2y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+4y=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-4y+16
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-4y+16\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{2}y+2
Whakareatia \frac{1}{8} ki te -4y+16.
-\frac{1}{2}y+2-2y=2
Whakakapia te -\frac{y}{2}+2 mō te x ki tērā atu whārite, x-2y=2.
-\frac{5}{2}y+2=2
Tāpiri -\frac{y}{2} ki te -2y.
-\frac{5}{2}y=0
Me tango 2 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=2
Whakaurua te 0 mō y ki x=-\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2,y=0
Kua oti te pūnaha te whakatau.
x-2y=\frac{4}{2}
Whakaarohia te whārite tuarua. Whakawehea ngā taha e rua ki te 2.
x-2y=2
Whakawehea te 4 ki te 2, kia riro ko 2.
8x+4y=16,x-2y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&4\\1&-2\end{matrix}\right))\left(\begin{matrix}8&4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\1&-2\end{matrix}\right))\left(\begin{matrix}16\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&4\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\1&-2\end{matrix}\right))\left(\begin{matrix}16\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\1&-2\end{matrix}\right))\left(\begin{matrix}16\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{8\left(-2\right)-4}&-\frac{4}{8\left(-2\right)-4}\\-\frac{1}{8\left(-2\right)-4}&\frac{8}{8\left(-2\right)-4}\end{matrix}\right)\left(\begin{matrix}16\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\\frac{1}{20}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}16\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 16+\frac{1}{5}\times 2\\\frac{1}{20}\times 16-\frac{2}{5}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=0
Tangohia ngā huānga poukapa x me y.
x-2y=\frac{4}{2}
Whakaarohia te whārite tuarua. Whakawehea ngā taha e rua ki te 2.
x-2y=2
Whakawehea te 4 ki te 2, kia riro ko 2.
8x+4y=16,x-2y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8x+4y=16,8x+8\left(-2\right)y=8\times 2
Kia ōrite ai a 8x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
8x+4y=16,8x-16y=16
Whakarūnātia.
8x-8x+4y+16y=16-16
Me tango 8x-16y=16 mai i 8x+4y=16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+16y=16-16
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
20y=16-16
Tāpiri 4y ki te 16y.
20y=0
Tāpiri 16 ki te -16.
y=0
Whakawehea ngā taha e rua ki te 20.
x=2
Whakaurua te 0 mō y ki x-2y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}