Whakaoti mō x, y
x = \frac{19}{17} = 1\frac{2}{17} \approx 1.117647059
y = \frac{175}{17} = 10\frac{5}{17} \approx 10.294117647
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+2y=15,x+3y=32
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+2y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-2y+15
Me tango 2y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-2y+15\right)
Whakawehea ngā taha e rua ki te -5.
x=\frac{2}{5}y-3
Whakareatia -\frac{1}{5} ki te -2y+15.
\frac{2}{5}y-3+3y=32
Whakakapia te \frac{2y}{5}-3 mō te x ki tērā atu whārite, x+3y=32.
\frac{17}{5}y-3=32
Tāpiri \frac{2y}{5} ki te 3y.
\frac{17}{5}y=35
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=\frac{175}{17}
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{5}\times \frac{175}{17}-3
Whakaurua te \frac{175}{17} mō y ki x=\frac{2}{5}y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{70}{17}-3
Whakareatia \frac{2}{5} ki te \frac{175}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{19}{17}
Tāpiri -3 ki te \frac{70}{17}.
x=\frac{19}{17},y=\frac{175}{17}
Kua oti te pūnaha te whakatau.
-5x+2y=15,x+3y=32
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\32\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&2\\1&3\end{matrix}\right))\left(\begin{matrix}-5&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&2\\1&3\end{matrix}\right))\left(\begin{matrix}15\\32\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&2\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&2\\1&3\end{matrix}\right))\left(\begin{matrix}15\\32\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&2\\1&3\end{matrix}\right))\left(\begin{matrix}15\\32\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-5\times 3-2}&-\frac{2}{-5\times 3-2}\\-\frac{1}{-5\times 3-2}&-\frac{5}{-5\times 3-2}\end{matrix}\right)\left(\begin{matrix}15\\32\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{17}&\frac{2}{17}\\\frac{1}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}15\\32\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{17}\times 15+\frac{2}{17}\times 32\\\frac{1}{17}\times 15+\frac{5}{17}\times 32\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{17}\\\frac{175}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{19}{17},y=\frac{175}{17}
Tangohia ngā huānga poukapa x me y.
-5x+2y=15,x+3y=32
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5x+2y=15,-5x-5\times 3y=-5\times 32
Kia ōrite ai a -5x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
-5x+2y=15,-5x-15y=-160
Whakarūnātia.
-5x+5x+2y+15y=15+160
Me tango -5x-15y=-160 mai i -5x+2y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+15y=15+160
Tāpiri -5x ki te 5x. Ka whakakore atu ngā kupu -5x me 5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y=15+160
Tāpiri 2y ki te 15y.
17y=175
Tāpiri 15 ki te 160.
y=\frac{175}{17}
Whakawehea ngā taha e rua ki te 17.
x+3\times \frac{175}{17}=32
Whakaurua te \frac{175}{17} mō y ki x+3y=32. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{525}{17}=32
Whakareatia 3 ki te \frac{175}{17}.
x=\frac{19}{17}
Me tango \frac{525}{17} mai i ngā taha e rua o te whārite.
x=\frac{19}{17},y=\frac{175}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}