Whakaoti mō y, m, x
x=1.75
y=6.5
m=2
Tohaina
Kua tāruatia ki te papatopenga
y=\frac{13}{10}\times 5
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 5.
y=\frac{13}{2}
Whakareatia te \frac{13}{10} ki te 5, ka \frac{13}{2}.
5\times 1.2=3m
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5m, arā, te tauraro pātahi he tino iti rawa te kitea o m,5.
6=3m
Whakareatia te 5 ki te 1.2, ka 6.
3m=6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
m=\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
m=2
Whakawehea te 6 ki te 3, kia riro ko 2.
5\times 6.3=18x
Whakaarohia te whārite tuatoru. Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5x, arā, te tauraro pātahi he tino iti rawa te kitea o x,5.
31.5=18x
Whakareatia te 5 ki te 6.3, ka 31.5.
18x=31.5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{31.5}{18}
Whakawehea ngā taha e rua ki te 18.
x=\frac{315}{180}
Whakarohaina te \frac{31.5}{18} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{7}{4}
Whakahekea te hautanga \frac{315}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 45.
y=\frac{13}{2} m=2 x=\frac{7}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}