Tīpoka ki ngā ihirangi matua
Whakaoti mō y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+2z=4\times 3
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 3.
y+2z=12
Whakareatia te 4 ki te 3, ka 12.
5y+2\times 7z=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,3.
5y+14z=48
Whakareatia te 2 ki te 7, ka 14.
y+2z=12,5y+14z=48
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2z=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2z+12
Me tango 2z mai i ngā taha e rua o te whārite.
5\left(-2z+12\right)+14z=48
Whakakapia te -2z+12 mō te y ki tērā atu whārite, 5y+14z=48.
-10z+60+14z=48
Whakareatia 5 ki te -2z+12.
4z+60=48
Tāpiri -10z ki te 14z.
4z=-12
Me tango 60 mai i ngā taha e rua o te whārite.
z=-3
Whakawehea ngā taha e rua ki te 4.
y=-2\left(-3\right)+12
Whakaurua te -3 mō z ki y=-2z+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=6+12
Whakareatia -2 ki te -3.
y=18
Tāpiri 12 ki te 6.
y=18,z=-3
Kua oti te pūnaha te whakatau.
y+2z=4\times 3
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 3.
y+2z=12
Whakareatia te 4 ki te 3, ka 12.
5y+2\times 7z=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,3.
5y+14z=48
Whakareatia te 2 ki te 7, ka 14.
y+2z=12,5y+14z=48
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\5&14\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}12\\48\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\5&14\end{matrix}\right))\left(\begin{matrix}1&2\\5&14\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&14\end{matrix}\right))\left(\begin{matrix}12\\48\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\5&14\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&14\end{matrix}\right))\left(\begin{matrix}12\\48\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&14\end{matrix}\right))\left(\begin{matrix}12\\48\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{14}{14-2\times 5}&-\frac{2}{14-2\times 5}\\-\frac{5}{14-2\times 5}&\frac{1}{14-2\times 5}\end{matrix}\right)\left(\begin{matrix}12\\48\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{2}\\-\frac{5}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}12\\48\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 12-\frac{1}{2}\times 48\\-\frac{5}{4}\times 12+\frac{1}{4}\times 48\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}18\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
y=18,z=-3
Tangohia ngā huānga poukapa y me z.
y+2z=4\times 3
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 3.
y+2z=12
Whakareatia te 4 ki te 3, ka 12.
5y+2\times 7z=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,3.
5y+14z=48
Whakareatia te 2 ki te 7, ka 14.
y+2z=12,5y+14z=48
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5y+5\times 2z=5\times 12,5y+14z=48
Kia ōrite ai a y me 5y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5y+10z=60,5y+14z=48
Whakarūnātia.
5y-5y+10z-14z=60-48
Me tango 5y+14z=48 mai i 5y+10z=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10z-14z=60-48
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4z=60-48
Tāpiri 10z ki te -14z.
-4z=12
Tāpiri 60 ki te -48.
z=-3
Whakawehea ngā taha e rua ki te -4.
5y+14\left(-3\right)=48
Whakaurua te -3 mō z ki 5y+14z=48. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
5y-42=48
Whakareatia 14 ki te -3.
5y=90
Me tāpiri 42 ki ngā taha e rua o te whārite.
y=18
Whakawehea ngā taha e rua ki te 5.
y=18,z=-3
Kua oti te pūnaha te whakatau.