Whakaoti mō y, x
x=4
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(y+1\right)=3x-4
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe x ki \frac{4}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(3x-4\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x-4,2.
2y+2=3x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+1.
2y+2-3x=-4
Tangohia te 3x mai i ngā taha e rua.
2y-3x=-4-2
Tangohia te 2 mai i ngā taha e rua.
2y-3x=-6
Tangohia te 2 i te -4, ka -6.
5x+y=3x+11
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe x ki -\frac{11}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+11.
5x+y-3x=11
Tangohia te 3x mai i ngā taha e rua.
2x+y=11
Pahekotia te 5x me -3x, ka 2x.
2y-3x=-6,y+2x=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2y-3x=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
2y=3x-6
Me tāpiri 3x ki ngā taha e rua o te whārite.
y=\frac{1}{2}\left(3x-6\right)
Whakawehea ngā taha e rua ki te 2.
y=\frac{3}{2}x-3
Whakareatia \frac{1}{2} ki te -6+3x.
\frac{3}{2}x-3+2x=11
Whakakapia te \frac{3x}{2}-3 mō te y ki tērā atu whārite, y+2x=11.
\frac{7}{2}x-3=11
Tāpiri \frac{3x}{2} ki te 2x.
\frac{7}{2}x=14
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{3}{2}\times 4-3
Whakaurua te 4 mō x ki y=\frac{3}{2}x-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=6-3
Whakareatia \frac{3}{2} ki te 4.
y=3
Tāpiri -3 ki te 6.
y=3,x=4
Kua oti te pūnaha te whakatau.
2\left(y+1\right)=3x-4
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe x ki \frac{4}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(3x-4\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x-4,2.
2y+2=3x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+1.
2y+2-3x=-4
Tangohia te 3x mai i ngā taha e rua.
2y-3x=-4-2
Tangohia te 2 mai i ngā taha e rua.
2y-3x=-6
Tangohia te 2 i te -4, ka -6.
5x+y=3x+11
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe x ki -\frac{11}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+11.
5x+y-3x=11
Tangohia te 3x mai i ngā taha e rua.
2x+y=11
Pahekotia te 5x me -3x, ka 2x.
2y-3x=-6,y+2x=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}2&-3\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}-6\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}-6\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}-6\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\right)}&-\frac{-3}{2\times 2-\left(-3\right)}\\-\frac{1}{2\times 2-\left(-3\right)}&\frac{2}{2\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-6\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{3}{7}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-6\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\left(-6\right)+\frac{3}{7}\times 11\\-\frac{1}{7}\left(-6\right)+\frac{2}{7}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
y=3,x=4
Tangohia ngā huānga poukapa y me x.
2\left(y+1\right)=3x-4
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe x ki \frac{4}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(3x-4\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x-4,2.
2y+2=3x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+1.
2y+2-3x=-4
Tangohia te 3x mai i ngā taha e rua.
2y-3x=-4-2
Tangohia te 2 mai i ngā taha e rua.
2y-3x=-6
Tangohia te 2 i te -4, ka -6.
5x+y=3x+11
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe x ki -\frac{11}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+11.
5x+y-3x=11
Tangohia te 3x mai i ngā taha e rua.
2x+y=11
Pahekotia te 5x me -3x, ka 2x.
2y-3x=-6,y+2x=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y-3x=-6,2y+2\times 2x=2\times 11
Kia ōrite ai a 2y me y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2y-3x=-6,2y+4x=22
Whakarūnātia.
2y-2y-3x-4x=-6-22
Me tango 2y+4x=22 mai i 2y-3x=-6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3x-4x=-6-22
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7x=-6-22
Tāpiri -3x ki te -4x.
-7x=-28
Tāpiri -6 ki te -22.
x=4
Whakawehea ngā taha e rua ki te -7.
y+2\times 4=11
Whakaurua te 4 mō x ki y+2x=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+8=11
Whakareatia 2 ki te 4.
y=3
Me tango 8 mai i ngā taha e rua o te whārite.
y=3,x=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}