Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(x-3\right)=5\left(y-7\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2x-6=5\left(y-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3.
2x-6=5y-35
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te y-7.
2x-6-5y=-35
Tangohia te 5y mai i ngā taha e rua.
2x-5y=-35+6
Me tāpiri te 6 ki ngā taha e rua.
2x-5y=-29
Tāpirihia te -35 ki te 6, ka -29.
11x-13y=0
Whakaarohia te whārite tuarua. Tangohia te 13y mai i ngā taha e rua.
2x-5y=-29,11x-13y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-5y=-29
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=5y-29
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(5y-29\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{5}{2}y-\frac{29}{2}
Whakareatia \frac{1}{2} ki te 5y-29.
11\left(\frac{5}{2}y-\frac{29}{2}\right)-13y=0
Whakakapia te \frac{5y-29}{2} mō te x ki tērā atu whārite, 11x-13y=0.
\frac{55}{2}y-\frac{319}{2}-13y=0
Whakareatia 11 ki te \frac{5y-29}{2}.
\frac{29}{2}y-\frac{319}{2}=0
Tāpiri \frac{55y}{2} ki te -13y.
\frac{29}{2}y=\frac{319}{2}
Me tāpiri \frac{319}{2} ki ngā taha e rua o te whārite.
y=11
Whakawehea ngā taha e rua o te whārite ki te \frac{29}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{2}\times 11-\frac{29}{2}
Whakaurua te 11 mō y ki x=\frac{5}{2}y-\frac{29}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{55-29}{2}
Whakareatia \frac{5}{2} ki te 11.
x=13
Tāpiri -\frac{29}{2} ki te \frac{55}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=13,y=11
Kua oti te pūnaha te whakatau.
2\left(x-3\right)=5\left(y-7\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2x-6=5\left(y-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3.
2x-6=5y-35
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te y-7.
2x-6-5y=-35
Tangohia te 5y mai i ngā taha e rua.
2x-5y=-35+6
Me tāpiri te 6 ki ngā taha e rua.
2x-5y=-29
Tāpirihia te -35 ki te 6, ka -29.
11x-13y=0
Whakaarohia te whārite tuarua. Tangohia te 13y mai i ngā taha e rua.
2x-5y=-29,11x-13y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-5\\11&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-29\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-5\\11&-13\end{matrix}\right))\left(\begin{matrix}2&-5\\11&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\11&-13\end{matrix}\right))\left(\begin{matrix}-29\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-5\\11&-13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\11&-13\end{matrix}\right))\left(\begin{matrix}-29\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\11&-13\end{matrix}\right))\left(\begin{matrix}-29\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{2\left(-13\right)-\left(-5\times 11\right)}&-\frac{-5}{2\left(-13\right)-\left(-5\times 11\right)}\\-\frac{11}{2\left(-13\right)-\left(-5\times 11\right)}&\frac{2}{2\left(-13\right)-\left(-5\times 11\right)}\end{matrix}\right)\left(\begin{matrix}-29\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{29}&\frac{5}{29}\\-\frac{11}{29}&\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}-29\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{29}\left(-29\right)\\-\frac{11}{29}\left(-29\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
Mahia ngā tātaitanga.
x=13,y=11
Tangohia ngā huānga poukapa x me y.
2\left(x-3\right)=5\left(y-7\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2x-6=5\left(y-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3.
2x-6=5y-35
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te y-7.
2x-6-5y=-35
Tangohia te 5y mai i ngā taha e rua.
2x-5y=-35+6
Me tāpiri te 6 ki ngā taha e rua.
2x-5y=-29
Tāpirihia te -35 ki te 6, ka -29.
11x-13y=0
Whakaarohia te whārite tuarua. Tangohia te 13y mai i ngā taha e rua.
2x-5y=-29,11x-13y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
11\times 2x+11\left(-5\right)y=11\left(-29\right),2\times 11x+2\left(-13\right)y=0
Kia ōrite ai a 2x me 11x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 11 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
22x-55y=-319,22x-26y=0
Whakarūnātia.
22x-22x-55y+26y=-319
Me tango 22x-26y=0 mai i 22x-55y=-319 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-55y+26y=-319
Tāpiri 22x ki te -22x. Ka whakakore atu ngā kupu 22x me -22x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-29y=-319
Tāpiri -55y ki te 26y.
y=11
Whakawehea ngā taha e rua ki te -29.
11x-13\times 11=0
Whakaurua te 11 mō y ki 11x-13y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
11x-143=0
Whakareatia -13 ki te 11.
11x=143
Me tāpiri 143 ki ngā taha e rua o te whārite.
x=13
Whakawehea ngā taha e rua ki te 11.
x=13,y=11
Kua oti te pūnaha te whakatau.