Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-2\right)\left(x-2\right)=16
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Whakareatia te x-2 ki te x-2, ka \left(x-2\right)^{2}.
x^{2}-4x+4=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}-4x-12=0
Tangohia te 16 i te 4, ka -12.
a+b=-4 ab=-12
Hei whakaoti i te whārite, whakatauwehea te x^{2}-4x-12 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x-6\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=6 x=-2
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+2=0.
x=6
Tē taea kia ōrite te tāupe x ki -2.
\left(x-2\right)\left(x-2\right)=16
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Whakareatia te x-2 ki te x-2, ka \left(x-2\right)^{2}.
x^{2}-4x+4=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}-4x-12=0
Tangohia te 16 i te 4, ka -12.
a+b=-4 ab=1\left(-12\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Tuhia anō te x^{2}-4x-12 hei \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-6\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-2
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+2=0.
x=6
Tē taea kia ōrite te tāupe x ki -2.
\left(x-2\right)\left(x-2\right)=16
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Whakareatia te x-2 ki te x-2, ka \left(x-2\right)^{2}.
x^{2}-4x+4=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}-4x-12=0
Tangohia te 16 i te 4, ka -12.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Whakareatia -4 ki te -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Tāpiri 16 ki te 48.
x=\frac{-\left(-4\right)±8}{2}
Tuhia te pūtakerua o te 64.
x=\frac{4±8}{2}
Ko te tauaro o -4 ko 4.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{4±8}{2} ina he tāpiri te ±. Tāpiri 4 ki te 8.
x=6
Whakawehe 12 ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{4±8}{2} ina he tango te ±. Tango 8 mai i 4.
x=-2
Whakawehe -4 ki te 2.
x=6 x=-2
Kua oti te whārite te whakatau.
x=6
Tē taea kia ōrite te tāupe x ki -2.
\left(x-2\right)\left(x-2\right)=16
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Whakareatia te x-2 ki te x-2, ka \left(x-2\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=4 x-2=-4
Whakarūnātia.
x=6 x=-2
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=6
Tē taea kia ōrite te tāupe x ki -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}