Whakaoti mō x, y
x=8801.1
y=101
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=8.89\times 990
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 990.
x=8801.1
Whakareatia te 8.89 ki te 990, ka 8801.1.
\frac{8801.1}{990-y}=9.9
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
8801.1=9.9\left(-y+990\right)
Tē taea kia ōrite te tāupe y ki 990 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -y+990.
8801.1=-9.9y+9801
Whakamahia te āhuatanga tohatoha hei whakarea te 9.9 ki te -y+990.
-9.9y+9801=8801.1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-9.9y=8801.1-9801
Tangohia te 9801 mai i ngā taha e rua.
-9.9y=-999.9
Tangohia te 9801 i te 8801.1, ka -999.9.
y=\frac{-999.9}{-9.9}
Whakawehea ngā taha e rua ki te -9.9.
y=\frac{-9999}{-99}
Whakarohaina te \frac{-999.9}{-9.9} mā te whakarea i te taurunga me te tauraro ki te 10.
y=101
Whakawehea te -9999 ki te -99, kia riro ko 101.
x=8801.1 y=101
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}