Whakaoti mō x, y
x = \frac{419612}{7269} = 57\frac{5279}{7269} \approx 57.726234695
y = \frac{417041}{7269} = 57\frac{2708}{7269} \approx 57.372540927
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+92y=5336
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 92.
79x-y=4503
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 79.
x+92y=5336,79x-y=4503
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+92y=5336
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-92y+5336
Me tango 92y mai i ngā taha e rua o te whārite.
79\left(-92y+5336\right)-y=4503
Whakakapia te -92y+5336 mō te x ki tērā atu whārite, 79x-y=4503.
-7268y+421544-y=4503
Whakareatia 79 ki te -92y+5336.
-7269y+421544=4503
Tāpiri -7268y ki te -y.
-7269y=-417041
Me tango 421544 mai i ngā taha e rua o te whārite.
y=\frac{417041}{7269}
Whakawehea ngā taha e rua ki te -7269.
x=-92\times \frac{417041}{7269}+5336
Whakaurua te \frac{417041}{7269} mō y ki x=-92y+5336. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{38367772}{7269}+5336
Whakareatia -92 ki te \frac{417041}{7269}.
x=\frac{419612}{7269}
Tāpiri 5336 ki te -\frac{38367772}{7269}.
x=\frac{419612}{7269},y=\frac{417041}{7269}
Kua oti te pūnaha te whakatau.
x+92y=5336
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 92.
79x-y=4503
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 79.
x+92y=5336,79x-y=4503
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&92\\79&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5336\\4503\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}1&92\\79&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&92\\79&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-92\times 79}&-\frac{92}{-1-92\times 79}\\-\frac{79}{-1-92\times 79}&\frac{1}{-1-92\times 79}\end{matrix}\right)\left(\begin{matrix}5336\\4503\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7269}&\frac{92}{7269}\\\frac{79}{7269}&-\frac{1}{7269}\end{matrix}\right)\left(\begin{matrix}5336\\4503\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7269}\times 5336+\frac{92}{7269}\times 4503\\\frac{79}{7269}\times 5336-\frac{1}{7269}\times 4503\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{419612}{7269}\\\frac{417041}{7269}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{419612}{7269},y=\frac{417041}{7269}
Tangohia ngā huānga poukapa x me y.
x+92y=5336
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 92.
79x-y=4503
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 79.
x+92y=5336,79x-y=4503
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
79x+79\times 92y=79\times 5336,79x-y=4503
Kia ōrite ai a x me 79x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 79 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
79x+7268y=421544,79x-y=4503
Whakarūnātia.
79x-79x+7268y+y=421544-4503
Me tango 79x-y=4503 mai i 79x+7268y=421544 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7268y+y=421544-4503
Tāpiri 79x ki te -79x. Ka whakakore atu ngā kupu 79x me -79x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7269y=421544-4503
Tāpiri 7268y ki te y.
7269y=417041
Tāpiri 421544 ki te -4503.
y=\frac{417041}{7269}
Whakawehea ngā taha e rua ki te 7269.
79x-\frac{417041}{7269}=4503
Whakaurua te \frac{417041}{7269} mō y ki 79x-y=4503. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
79x=\frac{33149348}{7269}
Me tāpiri \frac{417041}{7269} ki ngā taha e rua o te whārite.
x=\frac{419612}{7269}
Whakawehea ngā taha e rua ki te 79.
x=\frac{419612}{7269},y=\frac{417041}{7269}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}