Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{8}x-y=-\frac{5}{2}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{8}x=y-\frac{5}{2}
Me tāpiri y ki ngā taha e rua o te whārite.
x=8\left(y-\frac{5}{2}\right)
Me whakarea ngā taha e rua ki te 8.
x=8y-20
Whakareatia 8 ki te y-\frac{5}{2}.
3\left(8y-20\right)+\frac{1}{3}y=13
Whakakapia te 8y-20 mō te x ki tērā atu whārite, 3x+\frac{1}{3}y=13.
24y-60+\frac{1}{3}y=13
Whakareatia 3 ki te 8y-20.
\frac{73}{3}y-60=13
Tāpiri 24y ki te \frac{y}{3}.
\frac{73}{3}y=73
Me tāpiri 60 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{73}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=8\times 3-20
Whakaurua te 3 mō y ki x=8y-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=24-20
Whakareatia 8 ki te 3.
x=4
Tāpiri -20 ki te 24.
x=4,y=3
Kua oti te pūnaha te whakatau.
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&-\frac{-1}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\\-\frac{3}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&\frac{\frac{1}{8}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}&\frac{24}{73}\\-\frac{72}{73}&\frac{3}{73}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}\left(-\frac{5}{2}\right)+\frac{24}{73}\times 13\\-\frac{72}{73}\left(-\frac{5}{2}\right)+\frac{3}{73}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=3
Tangohia ngā huānga poukapa x me y.
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times \frac{1}{8}x+3\left(-1\right)y=3\left(-\frac{5}{2}\right),\frac{1}{8}\times 3x+\frac{1}{8}\times \frac{1}{3}y=\frac{1}{8}\times 13
Kia ōrite ai a \frac{x}{8} me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{8}.
\frac{3}{8}x-3y=-\frac{15}{2},\frac{3}{8}x+\frac{1}{24}y=\frac{13}{8}
Whakarūnātia.
\frac{3}{8}x-\frac{3}{8}x-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
Me tango \frac{3}{8}x+\frac{1}{24}y=\frac{13}{8} mai i \frac{3}{8}x-3y=-\frac{15}{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
Tāpiri \frac{3x}{8} ki te -\frac{3x}{8}. Ka whakakore atu ngā kupu \frac{3x}{8} me -\frac{3x}{8}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{73}{24}y=-\frac{15}{2}-\frac{13}{8}
Tāpiri -3y ki te -\frac{y}{24}.
-\frac{73}{24}y=-\frac{73}{8}
Tāpiri -\frac{15}{2} ki te -\frac{13}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{73}{24}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
3x+\frac{1}{3}\times 3=13
Whakaurua te 3 mō y ki 3x+\frac{1}{3}y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+1=13
Whakareatia \frac{1}{3} ki te 3.
3x=12
Me tango 1 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 3.
x=4,y=3
Kua oti te pūnaha te whakatau.