Whakaoti mō x, y
x=5
y=-10
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-20=y
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10.
2x-20-y=0
Tangohia te y mai i ngā taha e rua.
2x-y=20
Me tāpiri te 20 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5x+45+7y=0
Whakaarohia te whārite tuarua. Me tāpiri te 7y ki ngā taha e rua.
5x+7y=-45
Tangohia te 45 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2x-y=20,5x+7y=-45
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+20
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+20\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+10
Whakareatia \frac{1}{2} ki te y+20.
5\left(\frac{1}{2}y+10\right)+7y=-45
Whakakapia te \frac{y}{2}+10 mō te x ki tērā atu whārite, 5x+7y=-45.
\frac{5}{2}y+50+7y=-45
Whakareatia 5 ki te \frac{y}{2}+10.
\frac{19}{2}y+50=-45
Tāpiri \frac{5y}{2} ki te 7y.
\frac{19}{2}y=-95
Me tango 50 mai i ngā taha e rua o te whārite.
y=-10
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\left(-10\right)+10
Whakaurua te -10 mō y ki x=\frac{1}{2}y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5+10
Whakareatia \frac{1}{2} ki te -10.
x=5
Tāpiri 10 ki te -5.
x=5,y=-10
Kua oti te pūnaha te whakatau.
2x-20=y
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10.
2x-20-y=0
Tangohia te y mai i ngā taha e rua.
2x-y=20
Me tāpiri te 20 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5x+45+7y=0
Whakaarohia te whārite tuarua. Me tāpiri te 7y ki ngā taha e rua.
5x+7y=-45
Tangohia te 45 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2x-y=20,5x+7y=-45
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\-45\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\5&7\end{matrix}\right))\left(\begin{matrix}2&-1\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&7\end{matrix}\right))\left(\begin{matrix}20\\-45\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\5&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&7\end{matrix}\right))\left(\begin{matrix}20\\-45\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&7\end{matrix}\right))\left(\begin{matrix}20\\-45\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2\times 7-\left(-5\right)}&-\frac{-1}{2\times 7-\left(-5\right)}\\-\frac{5}{2\times 7-\left(-5\right)}&\frac{2}{2\times 7-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}20\\-45\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{19}&\frac{1}{19}\\-\frac{5}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}20\\-45\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{19}\times 20+\frac{1}{19}\left(-45\right)\\-\frac{5}{19}\times 20+\frac{2}{19}\left(-45\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-10
Tangohia ngā huānga poukapa x me y.
2x-20=y
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10.
2x-20-y=0
Tangohia te y mai i ngā taha e rua.
2x-y=20
Me tāpiri te 20 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5x+45+7y=0
Whakaarohia te whārite tuarua. Me tāpiri te 7y ki ngā taha e rua.
5x+7y=-45
Tangohia te 45 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2x-y=20,5x+7y=-45
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\left(-1\right)y=5\times 20,2\times 5x+2\times 7y=2\left(-45\right)
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x-5y=100,10x+14y=-90
Whakarūnātia.
10x-10x-5y-14y=100+90
Me tango 10x+14y=-90 mai i 10x-5y=100 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y-14y=100+90
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=100+90
Tāpiri -5y ki te -14y.
-19y=190
Tāpiri 100 ki te 90.
y=-10
Whakawehea ngā taha e rua ki te -19.
5x+7\left(-10\right)=-45
Whakaurua te -10 mō y ki 5x+7y=-45. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-70=-45
Whakareatia 7 ki te -10.
5x=25
Me tāpiri 70 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 5.
x=5,y=-10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}