Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{47}x+y=86,x+\frac{1}{25}y=49
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{47}x+y=86
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{47}x=-y+86
Me tango y mai i ngā taha e rua o te whārite.
x=47\left(-y+86\right)
Me whakarea ngā taha e rua ki te 47.
x=-47y+4042
Whakareatia 47 ki te -y+86.
-47y+4042+\frac{1}{25}y=49
Whakakapia te -47y+4042 mō te x ki tērā atu whārite, x+\frac{1}{25}y=49.
-\frac{1174}{25}y+4042=49
Tāpiri -47y ki te \frac{y}{25}.
-\frac{1174}{25}y=-3993
Me tango 4042 mai i ngā taha e rua o te whārite.
y=\frac{99825}{1174}
Whakawehea ngā taha e rua o te whārite ki te -\frac{1174}{25}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-47\times \frac{99825}{1174}+4042
Whakaurua te \frac{99825}{1174} mō y ki x=-47y+4042. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{4691775}{1174}+4042
Whakareatia -47 ki te \frac{99825}{1174}.
x=\frac{53533}{1174}
Tāpiri 4042 ki te -\frac{4691775}{1174}.
x=\frac{53533}{1174},y=\frac{99825}{1174}
Kua oti te pūnaha te whakatau.
\frac{1}{47}x+y=86,x+\frac{1}{25}y=49
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{47}&1\\1&\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}86\\49\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{47}&1\\1&\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}\frac{1}{47}&1\\1&\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{47}&1\\1&\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}86\\49\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{47}&1\\1&\frac{1}{25}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{47}&1\\1&\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}86\\49\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{47}&1\\1&\frac{1}{25}\end{matrix}\right))\left(\begin{matrix}86\\49\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{25}}{\frac{1}{47}\times \frac{1}{25}-1}&-\frac{1}{\frac{1}{47}\times \frac{1}{25}-1}\\-\frac{1}{\frac{1}{47}\times \frac{1}{25}-1}&\frac{\frac{1}{47}}{\frac{1}{47}\times \frac{1}{25}-1}\end{matrix}\right)\left(\begin{matrix}86\\49\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{47}{1174}&\frac{1175}{1174}\\\frac{1175}{1174}&-\frac{25}{1174}\end{matrix}\right)\left(\begin{matrix}86\\49\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{47}{1174}\times 86+\frac{1175}{1174}\times 49\\\frac{1175}{1174}\times 86-\frac{25}{1174}\times 49\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{53533}{1174}\\\frac{99825}{1174}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{53533}{1174},y=\frac{99825}{1174}
Tangohia ngā huānga poukapa x me y.
\frac{1}{47}x+y=86,x+\frac{1}{25}y=49
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{47}x+y=86,\frac{1}{47}x+\frac{1}{47}\times \frac{1}{25}y=\frac{1}{47}\times 49
Kia ōrite ai a \frac{x}{47} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{47}.
\frac{1}{47}x+y=86,\frac{1}{47}x+\frac{1}{1175}y=\frac{49}{47}
Whakarūnātia.
\frac{1}{47}x-\frac{1}{47}x+y-\frac{1}{1175}y=86-\frac{49}{47}
Me tango \frac{1}{47}x+\frac{1}{1175}y=\frac{49}{47} mai i \frac{1}{47}x+y=86 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-\frac{1}{1175}y=86-\frac{49}{47}
Tāpiri \frac{x}{47} ki te -\frac{x}{47}. Ka whakakore atu ngā kupu \frac{x}{47} me -\frac{x}{47}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1174}{1175}y=86-\frac{49}{47}
Tāpiri y ki te -\frac{y}{1175}.
\frac{1174}{1175}y=\frac{3993}{47}
Tāpiri 86 ki te -\frac{49}{47}.
y=\frac{99825}{1174}
Whakawehea ngā taha e rua o te whārite ki te \frac{1174}{1175}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x+\frac{1}{25}\times \frac{99825}{1174}=49
Whakaurua te \frac{99825}{1174} mō y ki x+\frac{1}{25}y=49. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{3993}{1174}=49
Whakareatia \frac{1}{25} ki te \frac{99825}{1174} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{53533}{1174}
Me tango \frac{3993}{1174} mai i ngā taha e rua o te whārite.
x=\frac{53533}{1174},y=\frac{99825}{1174}
Kua oti te pūnaha te whakatau.